Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

音楽制作を行っていて人工知能技術に興味がある、あるいは機械学習をやっていて音楽が好きだ!そんな方に送る、機械学習による音楽生成のチュートリアル資料となります。本記事のみで、仕組みの理解から実際に音楽を生成して、SoundCloudで共有するまでの手順を網羅しています。 そして、本記事は先日実施した人工知能時代の音楽制作への招待 - Google Magenta 解説&体験ハンズオン -の自習用資料でもあります。 イベント自体は100名を超える方(開催前日の段階で倍率が5倍)に応募いただき、行きたかったけど行けなかった!という方も多いかと思うので、自習編にて内容に触れていただければと思います。 ※なお、会場のキャパを広げられなかった代わりに撮影をしていただいたので、後日講義動画が上がればそちらも掲載させていただきます。 ゴール 音楽生成とはそもそもどういう仕組みで、どんなアプローチが取られて
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ロボットから自動運転車、はては囲碁・将棋といったゲームまで、昨今多くの「AI」が世間をにぎわせています。 その中のキーワードとして、「強化学習」というものがあります。そうした意味では、数ある機械学習の手法の中で最も注目されている(そして誇張されている・・・)手法ともいえるかもしれません。 今回はその強化学習という手法について、基礎から最近目覚ましい精度を出しているDeep Q-learning(いわゆるドキュン、DQNです)まで、その発展の流れと仕組みについて解説をしていきたいと思います。 本記事の内容をベースに、ハンズオンイベントを開
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? scikit-learnのアルゴリズム・チートシートで紹介されている手法を全て実装し、解説してみました。 注釈 本記事シリーズの内容は、さらに丁寧に記載を加え、書籍「AIエンジニアを目指す人のための機械学習入門 実装しながらアルゴリズムの流れを学ぶ」 として、出版いたしました。 概要 scikit-learn アルゴリズム・チートシート 【対象者】機械学習を使用したい方、初心者向けの機械学習本を読んで少し実装してみた方 scikit-learnの説明は英語で分かりにくいし、実装例もシンプルでなくて、よく分からんという方 【得られるもの】
機械学習のスタックしていた案件をFacebook Prophetで3日で返済した話 背景 広告代理店業を行なっており、クライアント企業から予算を預かって、インターネット広告やマーケティング業をしているのだが、クライアントの予算消化の異常値を監視したい 2016年半ばに外部のデータ分析専門の会社に、その日の予算消化が異常の場合、アラートを鳴らすシステムを外注開始、2016年10月に納品 2017年9月半ばに進捗率が芳しくないことが判明した。終わる見込みが立たなかったので、私が解決に当たる (ついでに"Machine Learning: The High-Interest Credit Card of Technical Debt[2]"と呼ばれる負債化してしまう機械学習のシステムとはという評価軸があったので、これらから今回使えそうなプラクティスを取り出して適応してみたいというモチベーションが
秋山です。 先日、Google Open Sourceで「Facets」という機械学習向けデータセットの可視化ツールが公開されました。 サイトはこちら opensource.googleblog.com (※Chromeであれば、ブラウザ上でどういったことができるかのデモを触れます。Safariだとうまく動かない?ようなのでご注意ください) GitHubはこちら github.com デモのようにブラウザ上でデータを可視化したり、Pythonライブラリのjupyter内で使ったりすることができます(ブラウザで表示させるかjupyter内で表示させるかだけの違いですが…) 例えば巨大なデータを扱っていて、うまく分離できていないデータ群はどの辺りになるのか…といったことを可視化して眺めたいときなどによさそうなので、実際にちょっと使ってみたいと思います。 ■Facets使ってみた Facetsに
はじめに 強化学習よくわからないけど,理論そっちのけでとりあえずパパッと動かして見たいせっかちな人向けです.つまり僕のような人間です. OpenAI Gymで,強化学習の環境を提供してくれているので,それを用います. OpenAI Gymはあくまでも環境だけで,実際に学習させるには他のものが必要です. 調べて見ると,Kerasで強化学習をやるkeras-rlを書いた人がいて,これを使うと簡単に試せそうだったので使います.先人に感謝. 環境の準備 今回の環境 Python 3.6.0 :: Anaconda 4.3.1 (x86_64) Mac OS Sierra 10.12.5 keras 2.0.5 (backend tensorflow) tensorflow 1.2.0 最初はディスプレイのないサーバーでやっていましたが,めんどくさかったので,ローカル環境でやりました. ちなみにディ
結論 下記4つがオススメ上から順に見ていく事をオススメします。 【4日で体験】 TensorFlow x Python 3 で学ぶディープラーニング入門 みんなのAI講座 ゼロからPythonで学ぶ人工知能と機械学習 ゼロから作るニューラルネットワーク【Python 3 + NumPyでバックプロップを徹底マスター】 アプリケーション開発者のための機械学習実践講座 大前提 この記事を書いてる人 本職 Railsサーバーエンジニア(iphoneアプリ プログラマでもある) 三十半ば、三十歳過ぎてからプログラマになった。 変わり種とか突然変異と言われてる。 今後は比較的短期間(一年位)でデータサイエンティストになり さらなる給料アップを企んでいる。 想定している読者 機械学習だけでなくプログラミング自体も初心者に向けています。 前置き Udemyと動画学習について Udemyとは? Udemy
ソフトウェアエンジニアがFPGA(field-programmable gate array)を使うハードルがさらに下がってきている。クラウドサービスでFPGAを活用できたり、Pythonで記述したニューラルネットワークをFPGAに高位合成できる研究成果が出てきたりしているのだ。 ソフトウェア開発者の立場でFPGAに取り組むイベント「FPGAエクストリーム・コンピューティング」を主宰する佐藤一憲氏、FPGAの高位合成によるディープラーニングについて研究している東京工業大学の中原啓貴氏(中原研究室)、そしてFPGAベンダーであるザイリンクスの神保直弘氏が、急激に常識が変わりつつあるFPGAの動向を語り合った。 本稿では座談会の中から、ソフトウェアエンジニアにFPGAや高位合成が求められる現状、そして、今後どのようなツールを使うべきか、ソフトウェアエンジニアがFPGAに取り組む際の課題などにつ
Drew Paroski and Gary Orenstein on the rapid spread of machine learning and predictive analytics Machine learning has been a mainstream commercial field for some time now, but it’s going through an important acceleration. In this podcast episode, I talk about that acceleration with two executives from MemSQL, a company that specializes in in-memory databases: Gary Orenstein, MemSQL chief marketing
2020/02/01 追記 [コード付き]誰も知らない関連銘柄を、機械学習を使って素早く見つける こちらに最新の結果を載せました! 気づいたんですけど、私みたいな貧乏人はショッピングモールでおしゃれなゴミをせっせと買い漁るんですが、お金持ちの人って株を買うらしいんですよね。 考えてみれば貧乏人が欲しがるものって、百均のちょっとしたものから家や車やバイクやゲーム機など、買ったらお金が減るものばかりなんです。 それに比べて、お金持ちが買うものって、株や投資用の土地や、リスクこそあるものの貧乏人が欲しがらないわりに買ったらお金が増える可能性のあるものばかりなんですよねー。 これは悔しい!休日になるたびにせっせとショッピングモールにお金を運んでゴミを買い漁ってる自分を見てお金持ちはきっと笑っているに違いない!いやお金持ちには自分のような人間は視界にすら入らないのか、これはさっそく株を買わないと!と
Examining stats about your data can be helpful, but sometimes you need to find ways to visualize it too. Fortunately this data set only has one dependent variable, so we can toss it in a scatter plot to get a better idea of what it looks like. We can use the "plot" function provided by pandas for this, which is really just a wrapper for matplotlib. data.plot(kind='scatter', x='Population', y='Prof
実践Pythonデータサイエンスのレクチャー86 決定木とランダムフォレスト 、やっっっと最終章に辿り着きました。 まぁ、理解しきれてないけど… 長かった。 この最終章、visualize_tree()という独自関数を使ってランダムフォレスト分類器による分類結果を二次元マップとして描いて可視化するんですが、パッと見、よく分からないんです。 理解した気になった meshgrid()関数 のことを、実際は理解できていなかったことも要因かな…。 復習を兼ねてvisualize_tree()関数を紐解いてみたら、その過程がとても楽しかったので、簡単に紹介します。 やりたいこと 機械学習の教師用データを自分で作り、それを学習したモデルを作って、未知のデータを網羅的に与えた結果を図示して楽しむのが、ここでの目的です。 機械学習って、本来はもっと高尚な目的があって分析すると思うんですが、ここではその辺り
移転しました。 https://chezo.uno/post/2016-05-29-sonomoderu-guo-xue-xi-siteruno-wei-xue-xi-nano-tokun-tutara/
indicoが紹介しているインストール方法を参考にインストールします。まずはターミナルで以下のコードを打ちましょう。 npm install indico.io 数分待ち、インストールが完了すればOKです。 3. ファイルを作り実行する example.jsというファイルを作り、以下のコードを記入します。API KEYのところには自分のAPI KEYを入れてください。 var indico = require('indico.io'); indico.apiKey = 'API KEY'; var response = function(res) { console.log(res); } var logError = function(err) { console.log(err); } // single example indico.sentimentHQ("I love sleep
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く