タグ

数学に関するalyyaのブックマーク (23)

  • 統計・機械学習の理論を学ぶ手順 - Qiita

    社内向けに公開している記事「統計・機械学習の理論を学ぶ手順」の一部を公開します。中学数学がわからない状態からスタートして理論に触れるにはどう進めばいいのかを簡潔に書きました。僕が一緒に仕事をしやすい人を作るためのものなので、異論は多くあると思いますがあくまでも一例ですし、社員に強制するものではありません。あと項目の順番は説明のため便宜上こうなっているだけで、必ずしも上から下へ進めというわけでもありません。 (追記)これもあるといいのではないかというお声のあった書籍をいくつか追加しました。 数学 残念ながら、統計モデルを正しく用いようと思うと数学を避けることはできません。ニューラルネットワークのような表現力が高くて色々と勝手にやってくれるような統計モデルでも、何も知らずに使うのは危険です。必ず数学は学んでおきましょう。理想を言えば微分トポロジーや関数解析のような高度な理論を知っておくのがベス

    統計・機械学習の理論を学ぶ手順 - Qiita
  • 技術ようつべチャンネル集 - Qiita

    役立つYouTubeのチャンネルまとめ 数学、物理、アルゴリズム、プログラミング、などなど自分が使う技術に役立ちそうだな、困ったときによく見たなと思うチャンネルを紹介する。 取っ掛かり、ハマりがち、コツみたいな物が拾える。数学がメイン。随時更新していくつもり。 当たり前だけどちゃんとも読んで勉強するんだぞ。 背景 YouTubeは視聴する登録チャンネルの数が増えると、チャンネルが埋もれて発掘困難になりがち (chrome拡張でできるチャンネルのフォルダ分け機能は、ぽちぽち登録するのも面倒で、そのフォルダの中から掘り出すのも難しい) モチベが上がる(おべんつよしたい)チャンネルを探してるうちに湧いてくる、わんにゃんコンテンツ(だいちゅき)に流され一日が終わるため、 モチベが上がる有用なチャンネルにすぐにたどり着くために、よく使うQiitaに列挙しておくことにした Streamや大学専用サイ

    技術ようつべチャンネル集 - Qiita
  • クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog

    ---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解

    クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog
  • 基礎線形代数講座

    4. 公開にあたって ●まえがきに代えて 書は 株式会社 セガ にて行われた有志による勉強会用に用意された資料を一般に公開するもので す。勉強会の趣旨は いわゆる「大人の学び直し」であり、書の場合は高校数学の超駆け足での復習 から始めて主に大学初年度で学ぶ線形代数の基礎の学び直し、および応用としての3次元回転の表現の 基礎の理解が目的となっています。広く知られていますように線形代数は微積分と並び理工系諸分野の 基礎となっており、だからこそ大学初年度において学ぶわけですが、大変残念なことに高校数学では微 積分と異なりベクトルや行列はどんどん隅に追いやられているのが実情です。 線形代数とは何かをひとことで言えば「線形(比例関係)な性質をもつ対象を代数の力で読み解く」 という体系であり、その最大の特徴は原理的に「解ける」ということにあります。現実の世界で起きて いる現象を表す方程式が線形な振

    基礎線形代数講座
  • コグニカル

    コグニカルは、足りない知識を掘り下げて理解する学習サイトです。

  • 高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog

    去年の12月頃から数学の学び直しを始めた。 職業柄少し専門的な、特に機械学習の方面の書籍などに手を出し始めると数式からは逃れられなかったりする。とはいえ元々自分は高校時代は文系で数学1A2Bまでしか履修していない。そのせいか少し数学へ苦手意識があり「図でわかるOO」とか「数学無しでもわかるOO」のような直感的に理解出来る解説に逃げることが多かった。実務上はそれで問題ないにしてもこのまま厳密な理解から逃げているのも良くないなと感じたのでもう少し先の数学に取り掛かることにした。 巷には数学の学び直しについての記事が既にたくさんある。それに自分の場合は何かの受験に成功した!とか難関の資格を取得した!というような華々しい結末を迎えている状態ではない。そんな中で自分が何か書いて誰の役にたつかもわからないが、少なくとも自分と似たようなバックグランドを持つ人には意味のある内容になるかもしれないので、どの

    高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog
  • 「ループ・再帰・gotoを使わず1から100までの数値を印字する」Conner Davis 氏の回答の考察 - Qiita

    2019年6月に以下の記事が投稿されました。 ループ、再帰、gotoを使わずに1から100までを印字するC++プログラムは書けますか?に対するIchi Kanayaさんの回答 - Quora 英語版の記事「How to print 1 to 100 in C++ without a loop, goto or recursion - Quora」から興味深い回答を抜き出して、それにランク付けをしながら和訳してくださっている記事です。 初級や中級は「まぁあるよね(C++知らないけれど……)」という感じですが、 上級とされた「マイクロソフト社のデータサイエンティスト Conner Davis 氏」の回答が面白かった ので、ご紹介を兼ねてその発想の源泉を推測してみることにしました。 以下に Conner Davis 氏の回答の和訳を引用します。 マイクロソフト社のデータサイエンティスト Conn

    「ループ・再帰・gotoを使わず1から100までの数値を印字する」Conner Davis 氏の回答の考察 - Qiita
  • やる夫で学ぶ機械学習シリーズ · けんごのお屋敷

    これは、機械学習に関する基礎知識をまとめたシリーズ記事の目次となる記事です。まとめることで知識を体系化できて自分自身の為にもなるので、こういうアウトプットをすることは大事だと思っています。ただ、普通にブログ記事を書くのも面白くないので、ちょっといつもとは違う方法でやってみようというのが今回のシリーズ記事。 2 ちゃんねるのキャラクターが登場人物として出てきて、彼らが会話して話が進んでいく「やる夫で学ぶシリーズ」という講義調の形式のものがあります。個人的にはやる夫で学ぶシリーズや 数学ガール のような会話形式で話が進んでいく読み物は読みやすいと思っています。さらに、先日みつけた やる夫で学ぶディジタル信号処理 という資料がとてつもなくわかりやすく、これの真似をして書いてみようと思い至りました。記事中のやる夫とやらない夫のアイコンは http://matsucon.net/material/m

  • 普通のデータサイエンティストと世界トップクラスのデータサイエンティストの違い ニュースイッチ by 日刊工業新聞社

    「データサイエンティストと名乗るのは厚かましいというか、自分はむしろ外れ値です」そう切り出した小野寺和樹さんは現在、DeNAのAI部データサイエンス第一グループに所属している。 確かにデータサイエンティストには数学や物理学の修士や博士といった理系のバックグラウンドを有する人が多い中、小野寺さんは経済学部出身で数学の知識も「二次関数の頂点がわかるくらい」だという。 そんな小野寺さんだがKaggle Grandmaster(カグル グランドマスター)という称号を持っている。世界では163人、日では10人程度しかいない(2019年11月現在)。 【補足説明】Kaggle(カグル)とは、データサイエンティストや機械学習エンジニアが集まる世界最大のコミュニティ。大きな特徴は、誰でも参加可能なコンペティションがあることだ。世界中の企業や研究機関などが提供したビッグデータと課題に対し、モデルの精度を

    普通のデータサイエンティストと世界トップクラスのデータサイエンティストの違い ニュースイッチ by 日刊工業新聞社
  • 深層学習の数理

    2. 1946: ENIAC,高い計算能力 フォン・ノイマン「俺の次に頭の良い奴ができた」 1952: A.Samuelによるチェッカーズプログラム 機械学習人工知能歴史 2 1957:Perceptron,ニューラルネットワークの先駆け 第一次ニューラルネットワークブーム 1963:線形サポートベクトルマシン 1980年代:多層パーセプトロン,誤差逆伝搬, 畳み込みネット 第二次ニューラルネットワークブーム 1992: 非線形サポートベクトルマシン (カーネル法) 統計的学習 線形モデルの限界 非凸性の問題 1996: スパース学習 (Lasso) 2003: トピックモデル (LDA) 2012: Supervision (Alex-net) 第三次ニューラルネットワークブーム データの増加 +計算機の強化 1960年代前半: ELIZA(イライザ), 擬似心理療法士 1980年代

    深層学習の数理
  • 「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】

    このスライドでは, ・フーリエ級数 ・複素フーリエ級数 ・フーリエ変換(連続) ・離散フーリエ変換(DFT) ・高速フーリエ変換(FFT) を解説しています. ブログはこちら 【フーリエ解析05】高速フーリエ変換(FFT)とは?内側のアルゴリズムを解説!【解説動画付き】 https://kenyu-life.com/2019/07/08/what_is_fft/ Twitter → https://twitter.com/kenyu0501_?lang=ja Youtube → https://youtu.be/zWkQX58nXiw

    「フーリエ級数」から「高速フーリエ変換」まで全部やります!【2019.07.20更新】
  • 数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただ..

    数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただきます。とりあえず以下の分野について勉強なさることを薦めます。 (必要なら)微積分と線形代数の復習微積分なら杉浦「解析入門」がおすすめ。線形代数なら佐武「線型代数学」か斎藤「線形代数の世界」がおすすめです。 体とガロア理論堀田「可換環と体」、雪江「代数学1・2・3」あたりがよい。 環論Atiyah MacDonald「可換代数入門」、雪江「代数学1・2・3」あたりがよい。辞書として松村「可換環論」を買うといいかも。 整数論Serre「A Course in Arithmetic」とか、斎藤・黒川・加藤「数論」の6章あたりまでとか。 これらは数学科学部3〜4年のカリキュラムに含まれる基的な知識です。先の内容を学びたい気持ちもあると思いますが、まずこれらの分野を「十分」学んでください。各分野についてどれぐらい学ぶ必要がある

    数学専門の修士1年です。整数論を学ぶものの端くれとして助言させていただ..
  • いとう on Twitter: "最近NNの数学的定式化が一部で流行っているっぽいので昨日リプライで送られてきた論文紹介するけど。これ数学プロパーが深層学習を勉強するときに一番良いPDFではと思えるレベル。よくここまでサーベイできるなと。。。(200ページ以上ある… https://t.co/8GfQYxQWYA"

    最近NNの数学的定式化が一部で流行っているっぽいので昨日リプライで送られてきた論文紹介するけど。これ数学プロパーが深層学習を勉強するときに一番良いPDFではと思えるレベル。よくここまでサーベイできるなと。。。(200ページ以上ある… https://t.co/8GfQYxQWYA

    いとう on Twitter: "最近NNの数学的定式化が一部で流行っているっぽいので昨日リプライで送られてきた論文紹介するけど。これ数学プロパーが深層学習を勉強するときに一番良いPDFではと思えるレベル。よくここまでサーベイできるなと。。。(200ページ以上ある… https://t.co/8GfQYxQWYA"
  • 大学の数学/物理を無料で学べるおすすめサイト・サービス6選 - プロクラシスト

    高校生のほけきよ少年にとって、得られる大学以上の物理や数学の情報はwebサイトだけでした。 物理や数学の専門書って高いんですよね。あと、大きな屋じゃないと取り扱っていない。 今ではamazonでいろいろな書籍が手に入るようになりましたが、高いしどんな内容がかかれているかは分からないので、買うのもためらわれます。 そこで今日は 好奇心溢れる高校生 お金はない、単位が危ない、やる気に溢れた大学生 社会人になってから物理や数学趣味で始めたい人 たちのために、無料で大学以上の内容を学べるサイト/サービスを紹介します! 1. 物理のかぎしっぽ 2. EMANの物理学 3. MITの物理学講義(Youtube) 4. 現代数学観光ツアー 物理のための解析学探訪 5. 数学:物理を学び楽しむために 6. 高校数学の美しい物語 まとめ ※ここでいう数学は「物理学のための数学」の範疇を超えません。 1.

    大学の数学/物理を無料で学べるおすすめサイト・サービス6選 - プロクラシスト
  • 標準偏差とは何か!その求め方と意味を図解で徹底解説

    ここでは高校数学で登場し、統計学を学ぶ上でとても重要な役割を担う「標準偏差」について、図解を駆使し、その求め方と意味について解説していきます。 標準偏差の求め方や意味を理解するには、以下の4つのSTEPを踏めば簡単に理解することができます。 標準偏差は「式を覚える」のではなく「イメージ化」することがとても重要です。 4つのSTEPを質的なイメージで捉えることで「標準偏差とは何か」や「標準偏差はどうやって求めるのか」がスッキリ頭に入ってきますので、ぜひ最後までお付き合い下さい。 標準偏差の求め方 標準偏差を求める式がこちらになります。 いきなりかなり難しい式が登場してきました(汗 この式を覚えることはなかなか厳しいですよね。 ただ、この式の記号のひとつひとつをイメージ化しながら読み解くことで、この難しい式が実はとてもストーリー性のある面白い構造をしていることが分かってきます。 ここではその

    標準偏差とは何か!その求め方と意味を図解で徹底解説
  • 必要十分条件の意味と覚え方を図解で徹底解説!

    ここでは、高校数学で学ぶ「必要十分条件」という考え方について、その意味と覚え方を分かりやすく解説していきます。 必要十分条件という考え方に対しては、苦手意識を持っている方も多いのではないでしょうか。ゴリゴリ計算する他の数学分野とは異なり、より論理的な思考力が求められる分野であるため、「よく分からない」とあきらめてしまいがちな概念です。 一方で、必要十分条件の考え方を理解し、使いこなすことができるようになると、高校生ならずとも社会人でも、他者に対し論理的に状況を説明・共有することができる大変便利な概念でもあります。 一見すると何を言っているのか分かりにくい分野ですが、その理解に必要な質は驚くほど単純です。 そして、その質を抑えてしまえば、入試問題はワンパターンに見えてきますし、日常生活でも実用性の高い考え方となっています。 そこで、ここでは、数学が苦手な方でも直感的に「必要十分条件」の

    必要十分条件の意味と覚え方を図解で徹底解説!
  • 【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる

    こんにちは,学生エンジニアの迫佑樹(@yuki_99_s)です. 工学系の大学生なら絶対に触れるはずのフーリエ変換ですが,「イマイチなにをしているのかよくわからずに終わってしまった」という方も多いのではないでしょうか? 難しいのに加えて,教科書もちょっと不親切で,いきなり論理が飛躍したりするんですよね(僕の理解力の問題かもしれませんが) 僕がフーリエ変換について学んだ時に,以下のような疑問を抱きました. 出来る限り難しい式変形は使わずにこれらの疑問を解決できるようにフーリエ変換についてまとめてみました!! 多少厳密性を欠いても,とりあえず理解するという目的の記事なので,これを読んだあとに教科書と付き合わせてみることをおすすめします. それでは,いってみましょう!! 今回の記事は結構気で書きました. フーリエ変換の公式 今回のゴールを確認するべく,まずはフーリエ変換及びフーリエ逆変換の公式

    【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる
  • P≠NP問題がざっくり理解できる本 - hiroyukikojima’s blog

    * 追記(6月27日) 最後の紹介した「約数ゲーム」について、メールで解答を教えてくれた人がいたので、最後に追加しました。 最近、野崎昭弘『「P≠NP」問題』ブルーバックスを読んだので、レビューをエントリーしようと思う。 そもそも、このを読もうと思ったのは、ある雑誌の企画で「数学の未解決問題」について、ある数学者と討論をすることになっていたのがきっかけだった。ミレニアム問題のいくつかが話題にのぼりそうなので、P≠NP問題についても少し知識を補充しておこうと思ったのだ。 でも、アマゾンのレビューで酷評されているのを読んで、いくぶん躊躇した。それで、少し時間が空いたけど、屋で立ち読みしてみて、その場で購入した。少なくともぼくには、アマゾンのレビューはミス・ディレクションにすぎないものだとわかった。買って帰って、速攻で読了したが、ぼくの要求にかなったであった。アマゾンのレビュー欄は、まあ、

    P≠NP問題がざっくり理解できる本 - hiroyukikojima’s blog
  • 新入生に薦める経済系文庫24冊 : ECONO斬り!!

    yyasuda 経済学者|大阪大学准教授 1980年東京都生まれ。2002年東京大学経済学部卒業。最優秀卒業論文に与えられる大内兵衛賞を受賞し、経済学部卒業生総代となる。2007年プリンストン大学よりPh.D.取得(経済学)。政策研究大学院大学助教授を経て、2014年4月から大阪大学大学院経済学研究科准教授。 専門は戦略的な状況を分析するゲーム理論。主な研究テーマは、現実の市場や制度を設計するマーケットデザイン。学術研究の傍らマスメディアを通した一般向けの情報発信や、政府での委員活動にも積極的に取り組んでいる。フジテレビ「とくダネ!」、関西テレビ「報道ランナー」などの番組ににコメンテーターとして出演中。財務省「理論研修」講師、金融庁「金融審議会」専門委員、自民党「未来戦略研究会」アドバイザーなどを務めた。

    新入生に薦める経済系文庫24冊 : ECONO斬り!!
  • 大学の理工系の講義ノートPDFまとめ (数学・物理・情報・工学) - 主に言語とシステム開発に関して

    大学と大学院の,理工系の講義ノートPDFのまとめ。 PDF形式の教科書に加え,試験問題と解答,および授業の動画も集めた。 学生・社会人を問わず,ぜひ独学の勉強に役立ててほしい。 内容は随時,追加・更新される。 (※現在,60科目以上) カテゴリ別の目次: (1) 数学の講義ノート (2) 物理学の講義ノート (3) 情報科学の講義ノート (4) 工学の講義ノート ※院試の問題と解答のまとめはこちら。 (1)数学の講義ノート 解析学: 解析学の基礎 (大学1年で学ぶ,1変数と多変数の微分・積分) 複素解析・複素関数論 (函数論) ルベーグ積分 (測度論と確率論の入門) 関数解析 (Functional Analysis) 代数: 線形代数 (行列論と抽象線形代数) 群論入門・代数学 (群・環・体) 有限群論 (群の表現論) 微分方程式: 常微分方程式 (解析的および記号的な求解) 偏微分方程

    大学の理工系の講義ノートPDFまとめ (数学・物理・情報・工学) - 主に言語とシステム開発に関して