この教科書は、はてなサマーインターンの講義資料として作成されたものです: https://github.com/hatena/Hatena-Textbook 機械学習編1(基礎編)では、最も初歩的な分類器である単純パーセプトロンを題材に、機械学習の基本について勉強しました。機械学習編2(実用編)では、実問題に機械学習を適用する上でのコツや、各種の機械学習アルゴリズムの使い分け、高次元データへの対処法、といったトピックについて解説していきます。 実問題に機械学習を適用する タスクを定義する データを特徴ベクトルに変換する 評価方法を決める 正解データの正例と負例は均等に ベースラインとなる手法を実装する 実データに向き合うときの心構え 機械学習のワークフロー 1. 前処理 データセット作成 サンプリング 特徴抽出 欠損値・欠測値への対応 値のスケーリング 特徴選択 次元削減 2. 学習 モデ
大喜利ができる人工知能があるらしい……しかも、博士が作っているらしい。本当なのか確かめてみたら思った以上にすごかった。 人工知能の勢いが増している、らしい。 人工知能がプロ囲碁棋士と対局し、大差でプロを破ったことは記憶に新しい。人間が有利だった分野が、次々と人工知能に追い上げられている。 20年後には今ある職業の半分がAIに取って代わられる、という予測もある。 しかし、エンターテイメント分野において人工知能はまだ人間に追いついていない。 ヒトの感情を揺さぶることに関しては、人工知能は未熟である。 そうも思われていた。 ところが最近、人工知能が「大喜利」で人間を破ったという情報を耳にした。 もしそれが本当だとすれば、笑いの分野でも人工知能が人間を超えたということになる。ふざけることしか能がない人間の集まりであるオモコロの存在意義すら危うい。 真相を確認するべく、大喜利で人間に勝つ人工知能を作
こんにちは、買物情報事業部の荒引 (@a_bicky) です。 前回、「検索結果の疑問を解消するための検索の基礎」で単語単位でインデキシングする前提で説明しましたが、今回は文などを単語単位で分割するために使う技術である形態素解析について触れます。 形態素解析器には色々ありますが、中でもメジャーと思われる MeCab の仕組みについて説明します。 MeCab の解析精度を上げるために辞書に単語を追加したことのある方もいると思いますが、動作原理を理解することで単語を追加する際に適切な生起コストを設定できるようになったり、学習の際に適切なパラメータを設定できるようになったりするはずです。 なお、MeCab は汎用テキスト変換ツールとしても使用できます が、簡単のため MeCab + IPA 辞書のデフォルト設定前提で説明します。 アジェンダ 形態素解析とは MeCab における最適な解析結果の推
何かこんなメディア記事が出ていたようです。 これを読んで色々な人がツッコミを入れまくっている模様ですが、この記事の不思議なところは「完全に間違った説明というわけでもないのに何故か(両分野に詳しい)誰が読んでも猛烈な違和感を覚える」ところなんじゃないかなぁと。 正直、これはライター・インタビュアー・コメンテーター・編集者の誰のせいなのかは全く分からないんですが、ツッコミ入れられまくっている内容について色々あげつらってもあまり建設的でないので、ここでは記事中で本題として取り上げられている「統計学と機械学習の違い」についてちょっとコメントしてみようと思います。 あ、もちろん僕がこれから書くコメントも別に正しいとは全く限らないので、おかしいところや間違ってるところがあったらバンバン突っ込んでいただければ幸いです*1。そしてガチ勢向けのコメントでもないので何卒悪しからず。 統計学はデータを「説明」す
はてなグループの終了日を2020年1月31日(金)に決定しました 以下のエントリの通り、今年末を目処にはてなグループを終了予定である旨をお知らせしておりました。 2019年末を目処に、はてなグループの提供を終了する予定です - はてなグループ日記 このたび、正式に終了日を決定いたしましたので、以下の通りご確認ください。 終了日: 2020年1月31日(金) エクスポート希望申請期限:2020年1月31日(金) 終了日以降は、はてなグループの閲覧および投稿は行えません。日記のエクスポートが必要な方は以下の記事にしたがって手続きをしてください。 はてなグループに投稿された日記データのエクスポートについて - はてなグループ日記 ご利用のみなさまにはご迷惑をおかけいたしますが、どうぞよろしくお願いいたします。 2020-06-25 追記 はてなグループ日記のエクスポートデータは2020年2月28
先日、自然言語処理の講演などをしていたときに、そもそも私なんかが話すよりも公開されているチュートリアルスライドを集めたほうが有用なんではないかと思い立って、これから自然言語処理を学びたい人や、ちょっと新しい分野を知りたい人向けに、日本語で読めるチュートリアルスライドを分野別にまとめてみました。 主に、学会のチュートリアルや招待講演、それから研究者の方のWebページなどを参照しながら作りました。 自然言語処理全般系の資料や、少し境界的なテーマは入っていません。 また、ぱっと読めるスライドだけにしています。 幾つか手前味噌な資料も載せてます・・。 頑張って集めてみましたが、思ったほど集まりませんでした。 作っていてわかったのですが、意外とスライドを公開している人は少ないようです。 埋もれてしまうのはもったいないですね。 いずれ、英語で読めるスライドを集めてみようと思います。 そっちはそっちで、
Transcript 1. 大規模データから単語の 意味表現学習-word2vec ボレガラ ダヌシカ 博士(情報理工学) 英国リバープール大学計算機科学科准教授 2. 2 2005 2008~10 学部 修士 博士 助教/講師 東京大学 工学部 東京大学大学院情報理工学系 文書自動要約における 重要文順序学習 同姓同名抽出 別名抽出 属性類似性計測 関係類似性計測 評判分類の分野適応 関係抽出の分野適応 進化計算を用いたWeb 検索結果順序学習 ソーシャルネットワーク の関係予測 対話型協調 Web検索エンジン 潜在関係検索 エンジン 自己紹介 専門分野:自然言語処理, 機械学習,データマイニング 2006~07 2010~13 2010~現在 准教授 リバープール大学 深層学習 3. 今回の講演の背景 •深層学習に関する活動 •2014年9月に深層学習のチュートリアルをCyberAge
独立行政法人・情報通信研究機構(NICT)は3月31日、自然文による質問に対し、Web上の情報から回答する「WISDOM X」を試験公開した。膨大なWeb情報から得た多種多様な回答を示すことで、ユーザーに“気づき”を与えるのが狙いという。 自然文による「なに?」「なぜ?」「どうなる?」といった質問にさまざまな回答を提示することを目指したシステム。検索窓に文章を入力すると、10億件以上の日本語Webページの情報をもとに検索結果を示すほか、質問を思いつかない場合、単語を入力すれば質問の提案もしてくれる。 一般のWebサーチエンジンと異なり、「どうなる?」という質問では、原因となる事象と、起こり得る帰結の対応関係をWeb上の文から抽出して回答する仕組みだ。「人工知能が進化するとどうなる?」という質問には「人工知能が進化する」という原因に対応する「人工知能が話し相手となり結婚しない人が増える」とい
MeCab 用の新語辞書 mecab-ipadic-neologd を公開しました Tweet [NLP] 日本語の文書を機械的に処理しようと思った時に、ほとんどの人が MeCabとIPADIC(IPA辞書)の両方、または、どちらかを使うことになります。 IPADICはとてもよく出来ていますが、更新されないまま年月が過ぎているので、例えば2015年3月上旬に急に流行ったような言葉は収録していません。そのため、今日生まれたような新しい文書(例、Apple Watch発売)を解析する時に困ります。困らない人もいますけど、僕は困ります。 その課題に対処するために、日本全国津々浦々、自然言語処理に関わる全ての人は独自にMeCabの新語辞書を作って対応しているわけです。その際に元データとして使われることが多いのは Wikipedia 日本語版やはてなキーワードなどです。 困ったことに、新語辞書を生成
会員事業部の有賀 (@chezou) です。 クックパッドは、先日学術機関向けにレシピと献立のデータを公開しました。 研究者の方々にクックパッドのレシピ・献立を使っていただくことで、料理に関する研究の発展に貢献できればと思いデータ公開に至りました。 今回は、その中でもクックパッドのレシピデータを使った分析事例として、word2vec を使ったテキスト分析を行ったのでご紹介します。 なお、 3 / 7 (土) に日経新聞電子版さんと共催で、このデータを含む各種データを使った学生向けデータハッカソンを開催します。締め切りは 2 / 27 (金) と間近ですが、興味がある方はぜひご参加ください。 word2vec とは word2vec は単語を意味を含んだベクトルで表現できるようにするツールです。Tomas Mikolov らが提案し、その実装を公開しています。 CBOW (Continuou
ディープラーニングが猛威を振るっています。私の周りでは昨年から多く聞かれるようになり、私も日経BPさんの連載で昨年5月にGoogleの買収したDeep Mind社について触れました。今年はさらに今までディープラーニングについて触れていなかったメディアでも触れられるようになってきましたね。例えば、イケダハヤトさんも先日。高知でも話題になっているのですね。 私事ですが、今度湯川鶴章さんのTheWaveという勉強会で、人工知能とビジネスについて一時間ほど登壇させていただくことになりました。有料セミナーということです。チャールズべバッジの解析機関についてはこのブログでも以前触れましたが、「機械が人間を置き換える」みたいな妄想は100年位は言われていることですね。「解析機関」「機械学習」「人工知能」「シンギュラリティー」など、呼び名はどんどん変わり、流行り廃りもありますが、最近ロボットの発達も相まっ
こんにちは、はてなアプリケーションエンジニアの id:skozawa です。現在は、ブックマークチーム、及び、プラットフォームチームで開発をしています。 先日リリースされたはてなブックマークの新機能「トピック」の裏側について、Hatena Enginner Seminar #4で紹介しました。 Hatena Enginner Seminar #4で紹介した資料に少し加筆・修正を加えたものを公開します。 内容 「トピック」機能は、はてなブックマーク開発ブログにもある通り、これまで何人かのエンジニアが挑戦してきましたが、実現できていませんでした。その主な要因として、 トピック生成の精度が低い トピックタイトル生成が難しい という問題があり、これらを検索技術と自然言語処理技術によって解決することによりベータリリースへとこぎつけました。 トピック生成 これまでキーワードなどを用いて記事をクラスタリ
こんにちは、はてなブックマークのディレクター id:jusei です。本日、はてなブックマークの新機能「トピック」をベータリリースしました。現在はPC版でのみご利用いただけます。スマートフォン版、iOSアプリ、Androidアプリでは順次対応していきます。 新機能「トピック」では、「人気エントリー」に掲載されている記事の中から関連性の高い記事をまとめ、さらにそれ以外の関連エントリーも含めて一覧できる「トピックページ」を生成します。各トピックの見出しは、自然言語処理技術を用いて自動生成しております。トピックページの生成対象は、過去10年間に蓄積されたはてなブックマークの全エントリーです。 2015年1月のトピック2005年2月のトピック トピックページには、ユーザーの皆さまの間で多く話題になっている記事を抜粋して表示する「ハイライト」、すべての記事を表示する「新着」の2つの表示モードがありま
概要 偶然57577になっている文章を短歌としてつぶやく Twitter の bot を作りました。 フクロウが鳴くと明日は晴れるので洗濯物を干せという意味 #tanka ウィキペディア日本語版「フクロウ」より http://t.co/Dm1uHcQdzR— 偶然短歌bot (@g57577) 2014, 12月 31 再帰的アルゴリズムが有効な問題として有名であり #tanka ウィキペディア日本語版「ハノイの塔」より http://t.co/vm2ZqwImKi— 偶然短歌bot (@g57577) 2014, 12月 31 文章はウィキペディア日本語版を対象としました。 作り方 jawiki-latest-pages-articles.xml.bz2 をダウンロード。 WP2TXT で上記を扱いやすい形式に変換。 このスクリプト で57577になっている文を抽出。数時間かけて(遅い)
概要 本稿はRakutenMAというJavaScriptだけで動く学習器付きの形態素解析器を利用する入門記事です。本記事を読了すると、形態素解析の実行と形態素解析のモデルを作成・更新出来るようになります。 また、本稿ははてな×PC工房との連動企画の補足をするべく書きました。 「あんちべさんと一緒に Rakuten MA で形態素解析」はてなニュース連動企画 第二弾! : パソコン工房 パソコン工房のPCで遊ぼう第2弾! あんちべさんと一緒に Rakuten MA で形態素解析 - はてなニュース RakutenMAを利用したエディタ判定器デモ エディタ判定器 :パソコン工房 【やじうまWatch】Emacs派とVim派の対立を煽る「エディタ判定器」が面白いと評判 -INTERNET Watch はじめに 近年、twitterやFacebookなどのSNSやAmazonのレビューなどから得ら
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く