中学や高校で学んだ数学を題材にして、Pythonによる数学×プログラミングを学んでみよう。数学の教科書に載っている定理や公式だけに限らず、興味深い数式の例やAI/機械学習の基本となる例を取り上げながら、数学的な考え方を背景としてプログラミングを学べる連載。

数学を8年間、コンピュータサイエンスを3年間教えたことのある著者が、自らの経験に基づき、これからの時代に必要な数学とプログラミングの能力を身につけてもらいたいと筆をとった意欲作。定義や命題から入る伝統的なアプローチではなく、プログラミングによる視覚的アプローチで直感的な理解を促します。数学の視点からプログラミングを眺め、また逆にプログラミングの視点から数学を眺めることで、退屈な計算問題は、さまざまな工夫が可能なプログラミングの課題になり、プログラミングの文法は、数学の問題を解く上での強力な武器となり、それぞれの新たな魅力に気づかされるきっかけとなります。代数、幾何学、三角関数などの高校レベルの数学を使った数多くの例題を盛り込み、実際にProcessingでPythonプログラムを動かしながら、AI時代に求められる数学の能力を磨いていきます。 正誤表 ここで紹介する正誤表には、書籍発行後に気
$$ \newcommand{\bm}[1]{\mathbf #1} $$ 主成分分析(PCA)の数学的な理論とPythonによる実装¶ Author: Yuki Takei (noppoMan) Github: https://github.com/noppoMan Twitter: https://twitter.com/noppoMan722 Blog: https://note.com/noppoman これは、noteの主成分分析の背景にある数学理論の話(最適化問題)の本文です。 主成分分析の数学的な理論の理解に必要な知識¶ 主成分分析は、アルゴリズム的な観点で見るとデータの分散を最大化させる最適化問題であり、その理論は数学(とくに微分学、線形代数)により与えられている。以下は、主成分分析で使われる数学の分野をざっくりとリストしたものである。 データ分析 分散、共分散 解析学 多
機械学習とはどのようなものか 最近ではプログラミング言語としてPythonが注目されるようになり、機械学習、AI(人工知能)という言葉がよく聞かれるようになりましたが、これらの言葉を聞いて、皆さんはどのようなイメージを思い浮かべるでしょうか。 人それぞれ想像するものは違うでしょうが、一般的には「言葉を自動で翻訳してくれる」「画像を自動で識別してくれる」といったイメージをする方が多いのではないでしょうか。また一方で、「人間の仕事を奪ってしまう」といった悪いイメージを持つ方もいらっしゃるかと思います。こうした様々なイメージから、「機械学習やAI(人工知能)といったテクノロジーは、人間と同じように物事を理解している」と誤解されがちです。 しかし、機械学習の原理・理論をある程度していれば、これらの理解は間違いであることに容易に気づくことができます。実は機械学習やAI(人工知能)は、人間の言葉を理解
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く