タグ

Mathとmathに関するborder-dwellerのブックマーク (20)

  • クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog

    ---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解

    クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog
  • 「0は偶数ではない」と多くの人が信じているのは教育に問題があるという指摘

    「0」は2で割り切れるため偶数ですが、しばしば奇数や、「偶数でも奇数でもない数」と間違われます。なぜ人々がこのような間違いをするのかを数学者のコリン・ライト氏が解説しています。 The Parity Of Zero https://www.solipsys.co.uk/new/TheParityOfZero.html ある日、友人から「0は偶数でも奇数でもないはずだ。確かにそう習った」と言われたコリン氏は、どれくらいの人が同じような勘違いをしているのか気になり、Twitterでアンケート調査を実施しました。「0は次のうちどれ?」という質問に対して64.5%の人は「偶数」と正しい回答をしたものの、31.4%の人は「偶数でも奇数でもない」と回答しました。 Been having a discussion, and thought I'd have a quick poll. Please re

    「0は偶数ではない」と多くの人が信じているのは教育に問題があるという指摘
  • 2人のフィールズ賞学者が望月論文に抱いた違和感 - himaginary’s diary

    今月初めにフィールズ賞を受賞したピーター・ショルツ*1が、京都大学の望月新一教授によるabc予想の証明に問題点を見つけた、という話をこちらのツイート経由で知った。ただ、ショルツのその指摘を望月氏は認めておらず、今年3月に京都で直接顔を合わせた際も議論はすれ違いに終わり、両者の意見は今のところ平行線を辿ったままだという。 なお、前記のツイートのリンクを辿っていくと(ネイチャー記事→Peter Woitというコロンビア大の数学者の7/17付けブログ記事→同氏の昨年12/16付けブログ記事(の追記))、匿名のシカゴ大教授のブログ*2「Persiflage」の昨年12/17付け記事へのコメントという形で、ショルツ自身の見解*3を読むことができる。この件(というか数学全般)について小生は完全な門外漢ではあるが、専門用語の訳をグーグルさんに頼りつつ、以下に紹介してみる。 Thanks for the

    2人のフィールズ賞学者が望月論文に抱いた違和感 - himaginary’s diary
  • ベジエ曲線のなめらかさの話 / Bézier Smoothness

    社内勉強会で発表した内容です デモ: https://mashabow.github.io/bezier-smoothness/ ソース: https://github.com/mashabow/bezier-smoothness 補足記事: https://shiromoji.hatenablog.jp/entry/2019/05/18/005232

    ベジエ曲線のなめらかさの話 / Bézier Smoothness
  • モンティ・ホール問題 - Wikipedia

    モンティ・ホール問題 閉まった3つのドアのうち、当たりは1つ。プレーヤーが1つのドアを選択したあと、例示のように外れのドアが1つ開放される。残り2枚の当たりの確率は直感的にはそれぞれ 1/2(50%)になるように思えるが、はたしてそれは正しいだろうか。 モンティ・ホール問題(モンティ・ホールもんだい、英: Monty Hall problem)とは、確率論の問題で、ベイズの定理における事後確率、あるいは主観確率の例題の一つとなっている。モンティ・ホール(英語版)(Monty Hall, 名:Monte Halperin)が司会者を務めるアメリカゲームショー番組、「Let's make a deal(英語版)[注釈 1]」の中で行われたゲームに関する論争に由来する。一種の心理トリックになっており、確率論から導かれる結果を説明されても、なお納得しない者が少なくないことから、モンティ・ホール

    モンティ・ホール問題 - Wikipedia
  • 三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス

    数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ🐟 (@motcho_tw) February 7, 2018 たくさんの点を、それぞれの点に書かれた数に応じた速度で回すことにより、大きく灰色で表示された数の素因数を表現しているわけです。楽しいですね。 こんなのもあります。 3Dで図示してみました。 pic.twitter.com/AF2R1QEtqk — 鯵坂もっちょ🐟 (@motcho_tw) April 12, 2017 九九におけるの段の「一の位」は、ぐるぐる回る点によって表現することができます。面白いですね。 変わったものでは、こういうのもあります。 惑星が「惑星」と呼ばれる理由ですhttps:/

    三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス
  • 【プレスリリース】世界に1つだけの三角形の組 -抽象現代数学を駆使して素朴な定理の証明に成功- | 日本の研究.com

    慶應義塾大学大学院理工学研究科 KiPAS 数論幾何グループの平川義之輔(博士課程 3 年)と松村英樹(博士課程 2 年)は、『辺の長さが全て整数となる直角三角形と二等辺三角形の組の中には、周の長さも面積も共に等しい組が(相似を除いて)たった 1 組しかない』という、これまで知られていなかった定理の証明に成功しました。 線の長さや図形の面積は、私たちの身の回りにあるものを測量する際に欠かせない基的な「幾何学」的対象です。例えば、辺の長さが 3、4、5 の直角三角形は教科書でもおなじみの図形ですが、辺の長さが全て「整数」となる直角三角形はどのくらいあるか?という問題は、古代ギリシャ時代に研究がなされた重要な問題でした。この流れを汲んで 20 世紀に大きく発展した現代数学の一分野が「数論幾何学」です。 研究では、数論幾何学における「p 進 Abel 積分論」と「有理点の降下法」を応用するこ

    【プレスリリース】世界に1つだけの三角形の組 -抽象現代数学を駆使して素朴な定理の証明に成功- | 日本の研究.com
  • 整数のない数学体系について - 1400字制限

    テッド・チャンの「あなたの人生の物語」は、物理認識が人間とまるで異なる宇宙人とのファースト・コンタクトを描いたSFである。我々が物理を各時刻に起きる相互作用として微分的に認識しているのに対し、作に出てくるヘプタポッドなる生物は変分原理をベースとして積分的に(と言うべきだろうか)世界を認識している。 あなたの人生の物語 (ハヤカワ文庫SF) 作者: テッド・チャン,公手成幸,浅倉久志,古沢嘉通,嶋田洋一 出版社/メーカー: 早川書房 発売日: 2003/09/30 メディア: 文庫 購入: 40人 クリック: 509回 この商品を含むブログ (399件) を見る (ちなみに映画化もされたが、こっちは物理認識のエッセンスが出てこないのでこの話とは関係ない。) というわけで僕も数学認識が人類とまったく違う生物を描いたSFを書いてみたいと思う。二番煎じもはなはだしいが、二番煎じでも十分に味がある

    整数のない数学体系について - 1400字制限
  • 高校数学を勉強したい

    職業科の高校にいったので高校数学にほぼ全く触れずに大人になったのだけど高校数学を勉強したくなった。 けど一体何でやればいいんだろうか?白チャートでいいんだろうか?誰か教えて! 目的は?といわれるんだろうけど高校数学の基的なことを一通り勉強したいだけなんです。

    高校数学を勉強したい
  • 全ての素数の積が偶数なのが納得がいかない人たち

    ノラ@求:週休7日の仕事 @19391_nora @suzakus 素数は2.3.5.7・・・と続きます。 これを掛け算する場合、素数は頭に2があります(残りは全部奇数ですが)結果として全ての素数を掛けた場合であっても2nで偶数になりますよ

    全ての素数の積が偶数なのが納得がいかない人たち
  • 望月新一 - Wikipedia

    望月 新一(もちづき しんいち、1969年〈昭和44年〉3月29日 - )は、日数学者。自らのホームページでは「宇宙際幾何学者」を名乗っている[1]。学位は、Ph.D.(プリンストン大学・1992年)。京都大学数理解析研究所教授。研究分野は数論幾何学、遠アーベル幾何学。 東京都出身、籍は世田谷区[2]。数論における重要な未解決問題として知られるABC予想を、自身の構築した宇宙際タイヒミュラー理論を用いて証明したとする論文を発表した。 来歴[編集] 国際関係論の学者であり日新製鋼参与やNissin U.S.A.社長を歴任した父望月輝一[3]とユダヤ系アメリカ人 Anne Rauch[4]の長男。父の仕事の関係で5歳で日を離れる。中学生時代に1年間日へ戻り、[5]筑波大学附属駒場中学校に在学した以外は、アメリカ教育を受ける。妹に北欧美術史学者の Mia Mochizuki (Ph.

  • 望月氏のABC予想「証明」、独創的すぎて数学者も苦闘:朝日新聞デジタル

    数学の超難問「ABC予想」が、日人によって証明される見通しになった。数学史に残る偉業だ。論文筆者である京都大数理解析研究所の望月新一教授(48)は、自身のホームページ(HP)以外での社会に向けた発信は限られ、それが一層関心を集めてきた。 数理研は米プリンストン高等研究所などと並び称される世界屈指の数学の研究機関。数学のノーベル賞と称されるフィールズ賞を受けた広中平祐氏や森重文氏ら著名な数学者が所長を務めた。 望月さんは東京出身。父の仕事の関係で幼少期に渡米、名門・米プリンストン大大学院で博士号を取得したのを機に帰国した。2012年に今回の論文を発表すると、ニュースは世界を駆け巡り、英科学誌ネイチャーは「(証明が)真実なら驚くべき成果」などと報じた。従来の数学の解き方と異なる独自の理論に基づく論文は500ページを超え、その後の修正で現在は600ページに。その分量、学術誌に掲載される前に自身

    望月氏のABC予想「証明」、独創的すぎて数学者も苦闘:朝日新聞デジタル
  • 最古の「ゼロ」文字、3~4世紀のインド書物に 英大学が特定

    バクシャーリー写の拡大写真。一番下の行にある点が、現在使われている数字「0(ゼロ)」の起源となった。オックスフォード大学ボドリアン図書館提供。(c)Bodleian Libraries, University of Oxford 【9月16日 AFP】3~4世紀のインドの書物に記された黒い点が、数字の「0(ゼロ)」の最古の使用例であることを、英オックスフォード大学(University of Oxford)のチームが特定した。 この書物は、1881年に現パキスタン国内に位置する村で発掘されたカバノキの樹皮の巻物で、発見場所の村の名前にちなみ「バクシャーリー(Bakhshali)写」と呼ばれている。1902年からオックスフォード大学のボドリアン図書館(Bodleian Libraries)で保管されてきた。 バクシャーリー写は、すでにインド最古の数学書であるとされていたものの、その年代

    最古の「ゼロ」文字、3~4世紀のインド書物に 英大学が特定
  • まさかのNP困難?「九九って36種類しか数がないの不思議だよな」から始まる数学談義

    maki @maki_glenscape $ python3 -c 'print(len(set([x * y for x in range(1, 10) for y in range(1, 10)])))' 36 へぇ、ほんとだ twitter.com/motcho_tw/stat… 2017-04-06 01:53:53

    まさかのNP困難?「九九って36種類しか数がないの不思議だよな」から始まる数学談義
  • 「数学者は変人ばかり」って本当? 天才数学者・千葉逸人先生に聞いてきた | i:Engineer(アイエンジニア)

    こんにちは。ヨッピーです。日は 東京大学 に来ています。 僕みたいな低IQの屁こき豚がこんな所に来てしまったら、一歩入っただけで 知恵熱 出してぶっ倒れそうな気がしますが、取材のためなので仕方がありません。 さて、「i:Engineer」ではこれまで、 京都大学の先生 や 東工大の学生 など、いわゆるアカデミックな方々にも取材をさせていただきました。その取材の際に、 「数学者は変人しかいない」 「人格破綻してる」 「狂人の巣窟」 なんて、「 数学者やべぇ 」みたいなニュアンスの話を聞くことがしばしばありました。僕の知人で、京都大学を中退後、現在は優秀なエンジニアとしてゴリゴリ最前線で働いている方も「ずっと数学をやっていたかったけど、 数学をやるには全部捨てなきゃ無理だな と思って諦めた」みたいなことを言っており、がぜん「 数学者ってどんな人なんだろう 」と興味が湧いたわけです。 そこで今

    「数学者は変人ばかり」って本当? 天才数学者・千葉逸人先生に聞いてきた | i:Engineer(アイエンジニア)
  • スティーブン・ウルフラム - Wikipedia

    スティーブン・ウルフラム(Stephen Wolfram、1959年8月29日 - )は、イギリス人(学部卒業後はアメリカで進学)の理論物理学者で、米ウルフラム・リサーチ社を創業し現在も最高経営責任者である。 ロンドン生まれ。両親はドイツ・ヴェストファーレンから亡命したユダヤ人難民だった[1][2]。父・ヒューゴは小説家で、母・シビルはオックスフォード大学で哲学の教授を務めていた[3]。弟は技術者のコンラッド・ウルフラム(英語版)[3]。 彼は高校時代、授業が退屈で他の生徒の数学の宿題をアルバイトにしていた。17歳でオックスフォード大学に入学したものの、授業に出ずに独学をしていた。在学中に10の論文を執筆した後、18歳でカリフォルニア工科大学に進み、高エネルギー物理学、場の理論、宇宙論の研究を行った。20歳で理論物理学の研究により、カリフォルニア工科大学においてPh.D. の学位を取得。

    スティーブン・ウルフラム - Wikipedia
  • 0.999999... = 1 が理解できない中学生

    中学生「0.999999... = 1 に納得がいきません.なぜこれが成り立つんですか?」 先生「分数 1/3 を小数で表すと 0.333333... ですね.つまり, 1/3 = 0.333333... です.両辺を 3 倍すれば 1 = 0.999999... になります」 中学生「ちょっと待って下さい!まず 1/3 = 0.333333... っていうのはなんですか?」 先生「1 ÷ 3 を筆算してみればわかるように,商の部分には最初の 0. のあとは ず〜っと 3 が続きます.その様子を表現したのが 0.333333... です」 中学生「なるほど,ただの表記法ということですね.でもその場合,0.333333... を 3 倍したのが 0.999999... になるのはどうしてですか?」 先生「例えば,0.333 の場合で考えてみましょう.これを 3 倍したら 0.999 ですよね

    0.999999... = 1 が理解できない中学生
  • 「異世界からきた」論文を巡って: 望月新一による「ABC予想」の証明と、数学界の戦い

  • 0の0乗の正解がネット検索しても見つからないので作成した。 - 子育ての達人

    0の0乗の正解がネット検索しても見つからないので作成した。 更新:2019/11/29|公開:2015/11/21 教育・学習 0の0乗はいくらですか? 正しい解答を答えられますか? 事の発端は、昨年2月の読売新聞に「0に0をかけると0だが、0を0乗すると1になる」と書き始め、学力低下について批評した記事が出回ったところから始まります。これについて、「バカなことを言うな」「間違っていますよ」「最近はそう教えているの?」・・・などとネット上で論争が爆発しました。 この0の0乗事件から、もうすぐ2年になろうとしているので、さすがに誰かが正してくれていると思いネット検索してみたのですが、いろんな言い分は多々見受けられましたが、正しい解答に言及しているサイト(ページ)は見つからなかったので、僭越ながらここで正しい解答を記述しておきたいと思います。この機会に「0の0乗」について正しく理解いただければ

    0の0乗の正解がネット検索しても見つからないので作成した。 - 子育ての達人
  • 圏論 - Wikipedia

    圏論(けんろん、英: category theory)は、数学的構造とその間の関係を抽象的に扱う数学理論の 1 つである。サミュエル・アイレンベルグ と ソーンダース・マックレーンとによって代数的位相幾何学の基仕事の中で20世紀中ごろに導入された。圏論において考察の対象となる圏は対象とその間の射からなる構造であり、集合とその間の写像、あるいは要素とその間の関係(順序など)が例として挙げられる。 数学の多くの分野、また計算機科学や数理物理学のいくつかの分野で導入される一連の対象は、しばしば適当な圏の対象たちだと考えることができる。圏論的な定式化によって同種のほかの対象たちとの、内部の構造に言及しないような形式的な関係性や、別の種類の数学的な対象への関連づけなどが統一的に記述される。 圏の研究は、関連する様々なクラスの数学的構造に共通する性質を見出そうとする試みだといえる。 集合論的な数学

  • 1