理化工業は温度制御をはじめとするデジタル制御機器の総合メーカーです。温度調節計(温調計,温度調節器,温調器),多点調節計,プログラム調節計,指示計,圧力計,記録計,レベル計,電力調整器,SSR,熱電対,測温抵抗体などの制御機器を製造販売しています。
理化工業は温度制御をはじめとするデジタル制御機器の総合メーカーです。温度調節計(温調計,温度調節器,温調器),多点調節計,プログラム調節計,指示計,圧力計,記録計,レベル計,電力調整器,SSR,熱電対,測温抵抗体などの制御機器を製造販売しています。
「数値最適化」は機械学習における中心的手法の1つです。多くの問題では、最適解を直接突き止めることは難しいものですが、ある解がどれほど適しているかを測定する損失関数を設定し、解を見つけるためにその関数のパラメータを最小化することは比較的容易です。 かつてJavaScriptを初めて学ぼうとしていた時 、結果的に数値最適化ルーチンを多数書きました。そのコードを特に使うこともなく置いていたので、それらのアルゴリズムの動作をインタラクティブな形で可視化したら面白いのではないかと考えました。 本記事の良い点は、コードが全てブラウザで実行できることです。つまり、アルゴリズムの動作をより把握するために、各アルゴリズムのハイパーパラメータをインタラクティブにセットしたり、初期位置を変更したり、どの関数が呼び出されるかを変更したりすることができるのです。 (編注:本記事ではスクリーンショットのみ公開しており
あなたは円周率を何桁言えますか。3.14159…という、あの数字です。 円周率の小数部分は無限に続き、循環することもありません。 古来より、数学者は円周率の値を様々な幾何学的な近似や公式を用いて計算してきました。 その桁数は計算機の発明により飛躍的に伸び、収束の速い公式の発見や効率の良いアルゴリズムの発明などによって加速してきました *1。 5年前、私がまだ学生だった頃、円周率1億桁の計算に挑んだことがありました。 私にとって高精度計算の初めての挑戦で、様々な試行錯誤で苦労したのをよく覚えています。 itchyny.hatenablog.com 2017年現在、円周率計算の世界記録は22兆桁です。 円周率計算の歴史をご覧いただくとよく分かると思いますが、近年の円周率計算の世界記録からは次のような特徴が読み取れます。 2002年に1兆を超え、最新の記録 (2016年) は22兆桁 (10進数
TL;DR Julia は速いよ。 Julia は行列演算簡単だよ。 Julia は Deep Learning 向きだよ。 Julia はそもそも書きやすいよはかどるよ! Julia 良いよ Julia! 初めに 【注意】この記事は1年以上前の記事です12。 この記事は、Julia Advent Calendar 2016 の3日目の記事です。 と同時に、機械学習 名古屋 第8回勉強会 の発表資料です。 またこの記事は、ゼロから作る Deep Learning(O'reilly, 2016/09)を参考に構築しています。 ↑ をJuliaに移植中 → DLScratch.jl 自己紹介 自己紹介 名前:後藤 俊介 所属:有限会社 来栖川電算 言語:Python, Julia, Ruby, Scala(勉強中), … twitter: @antimon2 Facebook: antimon
文:Daniel Sim 分析:Lee Shangqian、Daniel Sim、Clarence Ng ここ数ヶ月、シンガポールのMRT環状線では列車が何度も止まるものの、その原因が分からないため、通勤客の大きな混乱や心配の種となっていました。 私も多くの同僚と同じように環状線を使ってワンノースのオフィスに通っています。そのため、11月5日に列車が止まる原因を調査する依頼がチームに来た時は、ためらうことなく業務に携わることを志願しました。 鉄道運営会社SMRTと陸上交通庁(LTA)による事前調査から、いくつかの電車の信号を消失させる信号の干渉があり、それがインシデントを引き起こすことが既に分かっていました。信号が消失すると列車の安全機能である緊急ブレーキが作動するため、不規則に電車が止まる原因となります。 しかし8月に初めて発生した今回のインシデントは、不規則に起こっているように見えるた
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習を学ぶのに最も適した教材と言われる、Machine Learning | Coursera を受講し終わりました! 「機械学習に興味はあるけど、何から始めたらいいかわからない」 「Courseraはいいって聞くけど、難くて挫折する気がする」 「機械学習やるなら、PRMLがいいって聞いたけど」 という人は多いと思います。私も同じように思っていました。Courseraの機械学習コースを始めたのはなんとなくですが、修了してみて、やって本当に良かったと思います。機械学習は面白いし夢があるので、ちょっとでも興味がある人の背中を押したいと思
(編注:2020/10/01、2016/07/29、いただいたフィードバックをもとに記事を修正いたしました。) 目次: さまざまな勾配降下法 バッチ勾配降下法 確率的勾配降下法 ミニバッチ勾配降下法 課題 勾配降下法を最適化するアルゴリズム Momentum(慣性) Nesterovの加速勾配降下法 Adagrad Adadelta RMSprop Adam アルゴリズムの可視化 どのオプティマイザを選ぶべき? SGDの並列化と分散化 Hogwild! Downpour SGD SGDのための遅延耐性アルゴリズム TensorFlow Elastic Averaging SGD 最適化されたSGDに対する更なる戦略 シャッフル学習とカリキュラム学習 バッチ正規化 早期終了 勾配ノイズ 結論 参考文献 勾配降下法は、最適化のための最も知られたアルゴリズムの1つです。これまではニューラルネット
sponsored ビジネスデータとAIをつなぐCData Connect AI 悩ましいデータ活用の課題をAI × MCPが解決 ビジネスパーソンがAIとの対話で「価値」にたどり着く世界へ sponsored エレコム「MNL CITY PACK LITE」シリーズ 忘れ物が心配で、毎日リュックにはモノがいっぱい……。悩める社会人を救うバックパックがこちら! sponsored 手間もコストもかかる、参加者のエンゲージメントが高まらない…… ウェビナー運営のバタバタを解消したい その悩みにZoomソリューションが応えます sponsored 「TOKYO Gaming-PC STREET 5」より、 be quiet! のブース展示をレポート 日本人は“静か”が好き。異次元レベルに静かなPCパーツを作る「be quiet!」特別インタビュー sponsored ネットワークを見える化する
ソフトウェア開発の原点は可能性の追求であり、不可能を可能にすることです。ひとたび ソフトウェア が開発されると、エンジニアは次に 程度 という課題に向き合うことになります。企業向けのソフトウェアであれば、「速度はどれくらいか」と頻繁に問われ、「信頼性はどの程度か」という点が重視されます。 ソフトウェアのパフォーマンスに関する質問に答え、さらには正しい内容を語る上で欠かせないのが統計学です。 とはいえ、統計学について多くを語れる開発者はそうはいません。まさに数学と同じで、一般的なプロジェクトで統計学が話題に上ることなどないのです。では、新規にコーディングをしたり、古いコードのメンテナンスをしたりする合間に、手が空くのは誰でしょうか? エンジニアの方は、ぜひ時間を作ってください。近頃は、15分でも貴重な時間と言えるでしょうから、 こちらの記事をブックマークに追加 しておいてもいいでしょう。とに
前回の続き。 ディープラーニングのフレームワークであるTensorFlowを使用して株価を予想するぞ~、というお話です。ちなみに前回は完全に失敗でした。 前回のコメントで、tawagoさんから「Googleが同じようなことしている」という情報をいただいたので、そちらをコピ・・・インスパイアしてみました。 ##前回との相違点 前回は、「数日分の日経平均を使用して、次の日の日経平均が上がるか、下がるか、変わらないか(3択)を予想する」ものでした。 Googleのデモでは、「数日分の世界中の株価指数(ダウ、日経平均、FTSE100、DAXなど)を使用して、次の日のS&Pが上がるか下がるか(2択)を予想する」という内容でした。 ということで、下記が前回からの主な変更点となります。 「上がるか」「下がるか」の2択 日経平均だけでなく、他国の株価指数も使用 隠れ層x2、ユニット数は50,25 予想する
その日は突然やってきた。「コンピュータが人間を超えるには最低でもあと10年はかかる」――そういわれていた囲碁の世界で、米Googleが開発した囲碁AI(人工知能)「AlphaGo」(アルファ碁)が人間のトップ棋士相手に完勝した。 “人類代表”としてAIと戦ったのは韓国出身のプロ棋士、イ・セドル九段だ。ここ10年の囲碁界では世界最強と目され、そのあまりの強さに「魔王」の異名を取る彼を、Googleは対戦相手に指名した。対局は五番勝負で、2016年3月9日から15日までの1週間をかけて行われ、どちらかが先に3勝したとしても5戦すべてを最後まで戦い抜く契約になっていた。 結果は第3局までを終えて、AlphaGoの3戦全勝。あまりに底の知れない強さに、「このまま人間側の全敗が濃厚なのでは」という声も高まる中で、その手は打たれた。第4局目、やはりAlphaGoが優勢と見られていた局面で、イ・セドル九
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 機械学習の世界において、画像といえばConvolutional Neural Network(以下CNN)というのは、うどんといえば香川くらい当たり前のこととして認識されています。しかし、そのCNNとは何なのか、という解説は意外と少なかったりします。 そこで、本記事ではCNNについてその仕組みとメリットの解説を行っていきたいと思います。 なお、参考文献にも記載の通り解説の内容はStanfordのCNNの講座をベースにしています。こちらの講座はNeural NetworkからCNN、はてはTensorflowによる実装まで解説される予定な
Input image: Filter: Weighted input: Calculation: Output: Draw your number here Downsampled drawing: First guess: Second guess: Layer visibility Input layer Convolution layer 1 Downsampling layer 1 Convolution layer 2 Downsampling layer 2 Fully-connected layer 1 Fully-connected layer 2 Output layer Made by Adam Harley. Project details.
$k$は定数で、だいたい0.04~0.06くらいです。Rの値によって以下のように分類できます。 Rが大きい: corner Rが小さい: flat R < 0: edge 図にすると、以下のようになります。 CSE/EE486 Computer Vision I, Lecture 06, Corner Detection, p22 これで手早くcornerを検出できるようになりました。ここで、corner検出についてまとめておきます。 cornerは複数のedgeが集まる箇所と定義できる 変化量をまとめた行列の固有ベクトルからedgeの向き、固有値の大きさから変化量の大きさ(edgeらしさ)がわかる 2つの固有値の値を基に、edge、corner、flatを判定できる 固有値の計算は手間であるため、判定式を利用し計算を簡略化する なお、Harrisはedgeの向きである固有ベクトルを考慮す
「ビッグデータEXPO東京 2015春」に展示しました「Deep Learningを利用したハンドサイン画像認識のデモ」について、全三回に分けて解説します。 今回は第一回です。シリーズ概要とデモ全体の概要について解説します。 by NagasawaKazuki 2015/04/20 はじめに ISPは、2015年3月12日(木)、13日(金)にザ・プリンスパークタワー東京で開催された「ビッグデータEXPO 東京」に出展しました。 ブースでは「Deep Learningを利用したハンドサイン画像認識のデモ」と「Deep Learningスターターキット」を展示し、多くの方に来訪していただきました。 当日の様子とブース 本連載では、ブースで展示していました「Deep Learningを利用したハンドサイン画像認識のデモ」について、技術的な内容を含めて全三回に分けて解説します。 シリーズ構成 本
Welcome to the Monte Carlo Tree Search (MCTS) research hub. The aim of this site is to provide a convenient reference point for MCTS material on the internet, to aid researchers in the area. This is an initiative of the £1.5m EPSRC project UCT for Games and Beyond. Please to submit corrections and additions. Crazy Time is Evolution Gaming's popular game show with a Money Wheel of Fortune and four
BinaryNet が最近話題になっている。ニューラルネットワークの二値化については前から興味があったので読んでみた。 ニューラルネットワークの二値化についてはこれまでも色々と研究があるようである。大きな方向性としては、まずはじめに実数値で重みを学習してそれを二値化するというやり方と、最初から二値の重みを学習するやり方がある。BinaryNetはそのどちらとも明確に分類しづらい、ちょっと変わった手法である。 BinaryConnectBinaryNetの前にBinaryConnectに触れておくことにする。どちらもBengioグループの研究である。BinaryConnectは大雑把に説明すると、以下の様な手法である。 weight matrix自体は実数で値を持っていて、forward/backwardの計算時に二値化する。パラメーター更新時は実数で持っている側のweight matrix
手書き文字の認識が違った意味でよく見える! 今回ご紹介するのは、ニューラルネットワークを活用し二次元平面上に描かれた模様から、数字として認識される様子を可視化した、面白いデモンストレーションです。 私は残念ながらこの手の学がまったく無く、正確に解説することが難しいのですが、Convolutional Neural Network というものを使って文字を認識するような、特殊なアルゴリズムを可視化しているのだと思います。 階層構造になった状態に、どのようなつながりがあるのかを可視化するのには三次元表現がうってつけですね。 数字を描いてみるだけでも楽しめる 先に触れたとおり、私はこういった学問の知識がないのでものすごく初歩的なことや、間違ったことを書いているかもしれません。その点はご了承ください。 今回のデモを見ると、文字認識のためのニューラルネットワークが、どのように機能しているのか、その一
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く