In addition to finding a shortest path, these algorithms can be used for distance maps, flow field pathfinding, connected components, map analysis, garbage collection algorithms, flow networks, and procedural map generation. There are many optimizations and specializations of these algorithms. Representing the map# The first thing to do when studying an algorithm is to understand the data. What is
「JPEG Tilt」というページを公開しました。MotionJPEG Builder を作った時に、JPEG のヘッダを読み込む処理を作ったので(結局これは使わなかったんですが)圧縮データの読み込み部分も作ってみようか、という気になって作ったのがこれです。JPEG ファイルで画像が圧縮される様子を視覚的に表現する…… という目標だったのですが、どうでしょうか。まあ内容が内容なので説明無しではさすがに意味が分からないと思います。 ということで、JPEG Tilt の見方を以下で簡単に説明します。 図1は、JPEG Tilt の画面です。画像が iTunes の CoverFlow のように並んでいますが、これの左側は画像の低周波成分のみを抜き出した物で、右に行くとより高周波の成分も含めるように並んでいます(低周波、高周波という言葉の意味はこの先で出てきます) 画像の上にマウスカーソルを乗せ
This is a place to find information about some of the more fundamental algorithms used in computer science. This information is widely available on the net, but hopefully the way it's presented and discussed here will resonate with you. Most of these are things you wouldn't need to write yourself. Modern libraries and languages tend to have quality implementations for all of this. Nonetheless, I t
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く