タグ

PythonとLLMに関するclavierのブックマーク (5)

  • Pythonの非同期処理の基礎とOpenAI APIへ並列リクエストする実践例

    こんにちは、commmuneでデータサイエンティストをしているひぐです。 人間が苦手なマルチタスクをLLMに任せたら、効果的に処理してくれるのではないか?というモチベーションのもと、Pythonの非同期処理を使って並列かつストリーミングでChatGPTの回答を出力するアプリを作りました🤖 例えば下記は、ある課題を入力すると、深さ・広さ・構造・時間軸という異なる観点で解像度を上げてくれるアプリケーションです。 アプリに関する登壇資料↓ このアプリ作成にあたってPythonの非同期処理を勉強したところ、最初は多くの専門用語(コルーチン、イベントループ...)や独自の記法により、全体像をつかむのに苦戦しました。一方で、学んでみると予想以上にシンプルな記法で実装できること、そして応用範囲が広くて便利だと理解しました。 この記事では、そんな少し取っつきにくけど便利なPythonの非同期処理にフォー

    Pythonの非同期処理の基礎とOpenAI APIへ並列リクエストする実践例
  • 実行例で理解する `Runnable` in `langchain` - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

    実行例で理解する `Runnable` in `langchain` - Qiita
  • GPT連携アプリ開発時の必須知識、RAGをゼロから解説する。概要&Pythonコード例

    こんにちは。わいけいです。 今回の記事では、生成AI界隈ではかなり浸透している RAG について改めて解説していきます。 「低予算で言語モデルを使ったアプリを開発したい」というときに真っ先に選択肢に上がるRAGですが、私自身もRAGを使ったアプリケーションの実装を業務の中で何度も行ってきました。 今回はその知見をシェア出来れば幸いです。 RAG(Retrieval-Augmented Generation)とは まず、 そもそもRAGとは何ぞや? というところから見ていきましょう。 RAG(Retrieval-Augmented Generation) は自然言語処理(NLP)と特に言語モデルの開発において使用される技術です。 この技術は、大規模な言語モデルが生成するテキストの品質と関連性を向上させるために、外部の情報源からの情報を取得(retrieval)して利用します。 要は、Chat

    GPT連携アプリ開発時の必須知識、RAGをゼロから解説する。概要&Pythonコード例
  • LangChain で社内チャットボット作ってみた

    こんにちは、クラウドエース SRE ディビジョン所属の茜です。 今回は、現在最も普及している対話型 AI サービスである ChatGPT で使用されているモデルと、LLM を使ったアプリケーション開発に特化したライブラリである LangChain を用いて社内向けのチャットボットを作成します。 ターゲット 任意のデータを元に回答を行うチャットボットを作成したい方 任意のデータを元に回答させる仕組みを知りたい方 ChatGPT とは ChatGPT とは、ユーザーが入力した質問に対して、まるで人間のように自然な対話形式でAIが答えるチャットサービスです。2022 年 11 月に公開されて以来、回答精度の高さが話題となり、利用者が急増しています。 人工知能の研究開発機関「OpenAI」により開発されました。 執筆時点では、GPT-3.5、GPT-4 という大規模言語モデル (LLM) が使用さ

    LangChain で社内チャットボット作ってみた
  • llama2のファインチューニング(QLORA)のメモ|Kan Hatakeyama

    2023/11/13追記以下の記事は、Llama2が公開されて数日後に書いた内容です。 公開から数ヶ月経った23年11月時点では、諸々の洗練された方法が出てきていますので、そちらも参照されることをおすすめします。 (以下、元記事です) 話題のLamma2をファインチューニングします。 QLoRAライブラリを使うパターンと、公式推奨の2つを試しました。前者が個人的にはオススメです。 前提Hugging faceで配布されている公式のモデルが必要です。以下を参考に、ダウンロードしておきます。 データセット作成 (7/20 15:20追記 設定ミスってたので修正しました) test.jsonを適当に作ります。 [ { "input": "", "output": "### Human: 富士山といえば?### Assistant: なすび" }, { "input": "", "output":

    llama2のファインチューニング(QLORA)のメモ|Kan Hatakeyama
  • 1