ランキング参加中プログラミング はじめに この記事では、Immutable Data Modelと呼ばれる設計手法をもとに、リレーショナル・データベースにおける、テーブル設計の話を書いています。また、今回の実践で利用する、別の考え方の背景を理解するために、Out of the tar pitという小論文の内容にも言及します。 「状態とは何か?」というややこしい話がたくさん出てきますし、データベースのテーブル設計についての話であることから、たくさんのSQLが出てきます。なので、データモデリングとか状態管理とか、特にSQLとかに興味がない人には面白くないと思います。 そのあたりに興味ある方は、読んでみて欲しいです。 Immutable Data Modelを、実際のアプリケーションで使うデータベースに採用するにあたり、どういう考え方で、どのようにテーブルを構成したか、自分なりの経験を書いていま
Materialize: Streaming SQL on Timely Data with Arjun Narayan and Frank McSherry Distributed stream processing frameworks are used to rapidly ingest and aggregate large volumes of incoming data. These frameworks often require the application developer to write imperative logic describing how that data should be processed. For example, a high volume of clickstream data that is getting buffered to Ka
PartiQL's extensions to SQL are easy to understand, treat nested data as first class citizens and compose seamlessly with each other and SQL. This enables intuitive filtering, joining and aggregation on the combination of structured, semistructured and nested datasets. PartiQL enables unified query access across multiple data stores and data formats by separating the syntax and semantics of a quer
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く