Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
動機 elix-tech.github.io の記事を読んで、「可視化」の項が面白いなーと思って。 引用されている図によると、人間の目にはまったく出力クラスとは関係なさそうに見える画像でもCNNによる分類器は騙されてしまう、ということのようだ。 なるほど分類モデルの方を固定しておいて入力を変数として最適化していけば任意の出力に最適な入力を得ることができるのか、と。 自分でもやってみることにした。 分類モデル TensorFlowによるDeep Learningでのアイドル顔識別モデルの性能評価と実験 - すぎゃーんメモ の記事で使ったモデルとデータセットで、ここではCross Validation用にデータを分けずに7,200件すべてを学習に使い20,000 step進めたものを用意した。 このモデルは学習したアイドルたちの顔画像に対してはかなりハッキリと分類できるようになっていて、試しに
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く