タグ

learningとdeeplearningに関するdeejayrokaのブックマーク (2)

  • CVPR2018 1000本ノック!(なお37本) - ABEJA Arts Blog

    はじめまして。ABEJAでリサーチャーをやっている藤です。 今年もCVPRの季節がやってきました。CVPRとはコンピュータビジョンに関するトップカンファレンスです。毎年規模が大きくなってきており、今年は3300の論文投稿があり、979件がacceptされました。また、21のチュートリアル、48のワークショップ、115以上の企業展示と様々なイベントが行われています。今年度のCVPR2018の開催は6月なのですが、プログラム自体は4月に公開済みですので、今回のブログの記事では、オーラル発表予定の論文のうちarxivで公開されている内容について一気に紹介します。 論文の動向 Deep learningについて Deep Learningに関連する論文は毎年増え続けており、今年度についてはacceptされた論文979件のうちarxivで459件が公開されており、なんと424件(頑張って数えました

    CVPR2018 1000本ノック!(なお37本) - ABEJA Arts Blog
  • 機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介 - ABEJA Tech Blog

    はじめまして。ABEJAでResearcherをやらせていただいている白川です。 先日、化合物の物性推定をDeep Learningをつかって従来手法より300,000倍高速に処理するという論文がでました([1], [2])。この論文の手法は、Graph Convolutionというグラフ上に定義されたConvolution演算がベースとなっています。物性推定に限らず、グラフ解析全般を Deep Learning で上手にこなせるようになれば、Deep Learningのアプリケーションの幅がぐっと拡がり、さらなるイノベーションが起きそうな予感がします。 ICMLやNIPSなどの機械学習系の主要国際会議でも数年前からGraph Convolutionについての論文がちらほら出現しはじめており、とくに最近その勢いが増してきている印象があります。個人的にも最近(前から?)にわかにグラフづいてい

    機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介 - ABEJA Tech Blog
  • 1