第1章 理論編 ・深層学習とは (p.13-) ・ニューラルネットワークとは (p.31-) ・どうやって学習するか: 勾配降下法 (p.57-) ・深層学習の注意点 (p.91-) 第2章 応用編 ・分類問題 (p.110-) ・画像認識 (p.120-) ・音声認識/自然言語処理…
第1章 理論編 ・深層学習とは (p.13-) ・ニューラルネットワークとは (p.31-) ・どうやって学習するか: 勾配降下法 (p.57-) ・深層学習の注意点 (p.91-) 第2章 応用編 ・分類問題 (p.110-) ・画像認識 (p.120-) ・音声認識/自然言語処理…
今回は書評エントリー。 ちょうど今日の午前中に須山さんの『ベイズ深層学習』を読み終えた。 読了。 控えめに言って、スゴかった。 まじでボリュームたっぷりでものすごく読み応えのあった一冊だったと思う。 ベイズ機械学習に詳しくない人でも読めるし(簡単とは言ってない)ホントに全人類におすすめしたい。 pic.twitter.com/Lbfs6Rr9JM— コミさん (@komi_edtr_1230) January 15, 2020 ものすごく良かったのでここで全力で宣伝しようと思う。 概要 本書はベイズ統計と深層学習の組み合わせについて詳説した一冊で、頻度論に基づく線形回帰と確率分布の基礎の解説から始まり、そこから線形回帰やニューラルネットワークがベイズ的にどのように説明できるかについて展開、そこから深層学習のベイズ的な説明をしてガウス過程へとたどり着く構成となっている。 本書の魅力はなんとい
図1:ReLU-MLPによる2次関数の近似.このネットワークを用いるとHölder関数を効率的に近似できる([Yarotsky, 2017]より引用) 深層学習モデルはこれまで様々な機械学習タスクにおいて成功を収めてきています.それに触発され,深層学習モデルの成功要因を理論面から解明する試みが盛んに行われています.特に深層学習の理論研究(特に統計的学習理論と呼ばれる分野)では,主に3つの問題提起がなされ,それに対する様々な回答がなされています [Poggio et al., 2016]: 表現能力:深層学習モデルはどんな関数を(効率的に)推定できるのか [Cybenko, 1989; Telgarsky, 2016; Eldan and Shamir, 2016; Sonoda and Murata, 2017] 最適化:なぜ(確率的)勾配法が「良い」解を見つけることができるのか [Li
.app 1 .dev 1 #11WeeksOfAndroid 13 #11WeeksOfAndroid Android TV 1 #Android11 3 #DevFest16 1 #DevFest17 1 #DevFest18 1 #DevFest19 1 #DevFest20 1 #DevFest21 1 #DevFest22 1 #DevFest23 1 #hack4jp 3 11 weeks of Android 2 A MESSAGE FROM OUR CEO 1 A/B Testing 1 A4A 4 Accelerator 6 Accessibility 1 accuracy 1 Actions on Google 16 Activation Atlas 1 address validation API 1 Addy Osmani 1 ADK 2 AdMob 32 Ads
おつかれさまです. 僕はあまり深層学習に関して記事を書くことはないのですが,ちょっと気になった論文があったので紹介します. [1711.00165] Deep Neural Networks as Gaussian Processes 論文はGoogle Brainの研究者らによるもので,NIPS2017 Bayesian Deep Learning WorkshopICLR2018にacceptされています.実は深層学習をガウス過程(Gaussian process)で構築するのはこの論文が初出ではないのですが,論文ではベイズ学習,深層学習,カーネル法を簡略かつ包括的に説明している内容になっているので非常に参考になります. さて,「深層学習はガウス過程」というのはちょっぴり宣伝的なタイトルにし過ぎてしまったのですが,もう少しだけ正確に論文の要点をまとめると次のようになります. 背景 単一
ここ1年くらいDeep Learning Tutorialを読みながらTheanoというライブラリで深層学習のアルゴリズムを実装してきた。 深層学習の基本的なアルゴリズムならTheanoでガリガリ書くこともできたがより高度なアルゴリズムをTheanoでスクラッチから書くのはとてもきつい*1。 そんなわけでPylearn2、Lasagne、nolearnなどのTheanoベースのラッパーライブラリをいろいろ調べていたのだが、結局のところKerasというライブラリが一番よさげだと思った。KerasはバックエンドとしてTheanoとTensorflowの両方が使え、より高レイヤな表現(たぶんChainerと同レベル)で深層学習のさまざまなアルゴリズムが記述できる。TheanoやTensorflowは完全に隠蔽されており、Kerasで書かれたプログラムはまったく修正せずにTheanoとTensor
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く