サインインした状態で「いいね」を押すと、マイページの 「いいね履歴」に一覧として保存されていくので、 再度読みたくなった時や、あとでじっくり読みたいときに便利です。

Jupyter Notebookでmatplotlibを使用する場合には、インポートする前に %matplotlib inline と記述しますよね?では… なぜinlineと入力しているのでしょうか? 入力し忘れても動くことがあるのはなぜでしょうか? %matplotlib notebookというコマンドもあるのをご存じでしょうか? この記事では、matplotlib inlineの謎について解説していきたいと思います! Jupyte Notebookのmatplotlibの読み込み|%matplotlib inline %matplotlib inlineを指定したときの挙動 グラフがアウトプット行に出力される plt.show()を省略してもグラフが出力される plt.show()でアウトプット行に2つのグラフ表示 %matplotlib inlineの意味はバックエンドの指定 バッ
こんにちは、Mr.Moです。 下記の記事を見てVS CodeのPython拡張でJupyter Notebookが使えることを知り便利そうだなーとしばらく直感的に使っていましたが、そろそろちゃんと使いこなしたいので用意されているデータサイエンスチュートリアルを参考にしならが使い方をマスターしていきたいと思います! Visual Studio CodeでJupyter Notebookを動かしてみた データサイエンスチュートリアルとは VS Codeの公式ページあるチュートリアルです。March 2020 (version 1.44)のアップデートで公開されたようですね。 https://code.visualstudio.com/docs/python/data-science-tutorial チュートリアルを参考にしながら使い方を確認していく さっそくチュートリアルを進めていきます。あ
一般的に Jupyter Notebook はローカルの環境にインストールして使うことが多い。 ただ、ローカルの環境は計算資源が乏しい場合もある。 そんなときは IaaS などリモートにあるサーバで Jupyter Notebook を使いたい場面が存在する。 ただ、セキュリティのことを考えると Jupyter Notebook の Web UI をインターネットに晒したくはない。 そこで、今回は SSH Port Forwarding を使って Web UI をインターネットに晒すことなく使う方法について書く。 このやり方ならリモートサーバに SSH でログインしたユーザだけが Jupyter Notebook を使えるようになる。 また、Web UI との通信も SSH 経由になるので HTTP over SSL/TLS (HTTPS) を使わなくても盗聴のリスクを下げられる。 リモー
Chainerでディープラーニング ここのところ、ディープラーニングのフレームワークはTensorFlowを使っています。以前はChainerも使っていたのですが、Chainer v2.0になり、以前画像認識とか試していたコードも動かなくなってしまい、やる気を失っていたのですよね。 そんな折、たまたまNVIDIAの機械学習のセミナを受ける機会があったのですが、GPU(Titan)積んだサーバに、Jupyterの環境が構築されていて、参加者はサーバにアクセスしてエンターキー連打していくだけでそれっぽい結果が出て、凄いやった気分になるし、絶対初心者は自分で環境出来ないからNVIDIAの環境にお金払うことになるしで、とてもよく設計されたセミナでした。 と書くと凄い悪徳セミナのようですが、Jupyterを使って、説明を読んでから、実際にコードを実行してその結果を確認していくというハンズオン形式は、
PythonユーザのためのJupyter[実践]入門posted with カエレバ池内 孝啓,片柳 薫子,岩尾 エマ はるか,@driller 技術評論社 2017-09-09 Amazonで検索楽天市場で検索Yahooショッピングで検索 目次 目次 はじめに 1. 環境の独立性を保つために各プロジェクト毎にvirtualenvを使う 2. Python3を使う 3. requirements.txtを保存しておく 4. すべてのimport文とパスの設定は初めのセルに入れる 5. はじめはコードは汚くても良い 6. グローバル名前空間を汚さないために、セルの中の処理は関数とする 7. 長い計算時間の結果をキャッシュするためにJoblibを使う 8. セルの独立性をできるだけ保つ 9. 変数名は短くても良い 10. ユーティリティ関数にはアサーションを使ってテストを書く 参考資料 MyE
こんにちは、AI Lab の馬場です。 このブログは CyberAgent Developers Advent Calendar 2016 の11日目の記事です。 昨日は sitotkfm さんの「ログを集める時に気をつけたいポイント」という記事でした。 この記事では、僕が仕事でデータ分析をやっていく上で大変お世話になっている Jupyter Notebook の Tips をまとめてみます。Jupyter Notebook では便利な機能がたくさんあるので、ちゃんと使うと無駄作業の削減になります。僕もこれまで分析途中で「あーこれができたらなあ」と検索しては時間をつぶしてきたので、ここでまとめて記憶にとどめておきたいと思います。 図表・可視化系 notebook 内に図を表示したい 単純に jupyter notebook を起動して、pyplot などでグラフを描画しようとしても、図は
ここから特定の行(列)だけを抜き出してグラフにします。それで簡単な説明はあとでするとして、忘れないようにコードを書いておくことにします。 %matplotlib inline import numpy as np import matplotlib.pyplot as plt import pandas as pd import os df = pd.read_csv("/Users/yourname/Desktop/book.csv", encoding="UTF-8") plt.figure(figsize=(8, 6.5)) plt.rcParams["font.size"] = 22 plt.rcParams["xtick.labelsize"] = 12 plt.rcParams["ytick.labelsize"] = 15 plt.rcParams["legend.fonts
こんにちは、データ分析部でバイトをしている子田(id:woody_kawagoe)です。 ニュースパスのログを集計して分析するといった業務を行っています。Gunosyで分析に利用しているツールとしては主にJupyter, Pandas, matplotlibがあります。 この組み合わせは非常に相性が良く、研究でも役立つと思います。 そこで今回のブログではデータ分析に役立つtipsや学んだことをまとめます。 Jupyter Pandas matplotlab データ分析の基本的な流れ 参考資料 Jupyter jupyter.org ブラウザ上で利用できる開発環境です。 対話型で、作成したスクリプトと出力結果の対応関係が非常に見やすいです。 スクリプトでprint文をかかなくても最終行に変数おけば表示してくれます。 またgithub上にJupyterで作成できるipynbファイルを置くと他の
計算は、慣れない人のアタマには負担だが、規則通りに進めていけばいいという利点がある。 たくさんの要素を扱ったり、複雑に込み入った推論を進めることもまた、人には負担の大きい作業だが、計算の形に変換することができれば、途中過程を規則的な繰り返し作業に置き換えることができる。たとえば機械に手伝ってもらえる。 今回、紹介するのは、数値化/統計的処理が難しい事象や、質的研究について、計算=演算の力を導入するとどんなことができるかという一例※である。 ※ 続くかどうかわからないが Sociology on Pythonシリーズの第一弾でもある。 ブール代数アプローチ(boolean algebra approach) ブール代数アプローチは、 Ragin(1989)によって、真理表とブール代数に依拠した比較分析の手法として、質的比較分析(Qualitative Comparative Analysi
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く