Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?

(2019-09-22 追記) NVIDIA Docker は現在では非推奨 (Deprecated) な方法となっています。 代わりに NVIDIA Container Toolkit を使ってください。 blog.amedama.jp 以前、このブログで Keras/TensorFlow の学習を GPU (CUDA) で高速化する記事を書いた。 このときは、それぞれの環境の分離には Python の virtualenv を使っていた。 blog.amedama.jp 今回は、別の選択肢として NVIDIA Docker を使う方法を試してみる。 NVIDIA Docker というのは NVIDIA が公式で出している Docker から CUDA を使えるようにするユーティリティ群と Docker イメージ。 このやり方だと Docker ホストには NVIDIA Driver さ
以前、このブログで Keras/TensorFlow の学習スピードを GPU を使って速くする記事を書いた。 ただし、このとき使った OS は Mac OS X (macOS Sierra) だった。 blog.amedama.jp とはいえ NVIDIA の dGPU を積んだ Mac がどれだけあるんだというと、正直なかなか無いと思う。 実際にやってみるとしたら Linux だよねということで、今回は Ubuntu 16.04 LTS を使う場合について書く。 インストールの手順については次の公式ドキュメントをベースに進める。 Installing TensorFlow on Ubuntu | TensorFlow 環境について 今回使った OS のバージョンなどは次の通り。 $ cat /etc/lsb-release DISTRIB_ID=Ubuntu DISTRIB_REL
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く