タグ

ブックマーク / qiita.com/kenmatsu4 (4)

  • 【統計学】尤度って何?をグラフィカルに説明してみる。 - Qiita

    統計学や機械学習をを勉強していると「尤度」という概念に出会います。まず読めないというコメントをいくつかいただきましたが、「尤度(ゆうど)」です。「尤もらしい(もっともらしい)」の「尤」ですね。犬 じゃありませんw 確率関数や確率密度関数を理解していれば数式的にはこの尤度を処理できると思うのですが、少し直感的な理解のためにグラフィカルに解説を試みたいと思います。 コードの全文はGithub( https://github.com/matsuken92/Qiita_Contents/blob/master/General/Likelihood.ipynb )にも置いてあります。 正規分布を例にとって 正規分布の確率密度関数は f(x)={1 \over \sqrt{2\pi\sigma^{2}}} \exp \left(-{1 \over 2}{(x-\mu)^2 \over \sigma^2

    【統計学】尤度って何?をグラフィカルに説明してみる。 - Qiita
  • 【統計学】一般化線形混合モデル(GLMM)を理解するための可視化。 - Qiita

    「データ解析のための統計モデリング入門」(通称:みどりぼん)のp157 にある、「分布を混ぜる」の考え方について、分布で考えるのではなく乱数ベースでシミュレーションを行いアニメーションで可視化をしてみましたので紹介したいと思います。 結果のアニメーションはこちらです。文でこの内容を説明していきます。 (コードはこちら) 詳細な説明はこの「みどりぼん」に全てわかりやすく書いてあるので、ここでは可視化するにあたっての解説のみを行います。なんだか面白そうな話だと思いましたら是非ご購入ください! 前置き ある植物において種子が最大8個作られるのですが、その種子の生存個数が二項分布、 p(y_i) ={8 \choose y_i}\ q_i^{y_i} (1-q_i)^{8-y_i} \quad \mbox{for}\ q_i=0,1,2,\dots,8 に従っているとします。$y_i$は個体$i

    【統計学】一般化線形混合モデル(GLMM)を理解するための可視化。 - Qiita
  • 【統計学】初めての「標準偏差」(統計学に挫折しないために) - Qiita

    統計をこれから学ぼうという方にとって、非常に重要な概念ですが理解が難しいものに「標準偏差」があると思います。「平均」くらいまでは馴染みもあるし、「わかるわかるー」という感じと思いますが、突如現れる「標準偏差」 の壁。結構、この辺りで、「数学無理だー」って打ちのめされた方もいるのではないでしょうか。 先にグラフのイメージを掲載すると、下記の赤い線の長さが「標準偏差」です。なぜこの長さが標準偏差なのか、ということも解き明かしていきます。 (code is here) 記事では数学が得意でない方にもわかるように1から標準偏差とはなにか、を説明してみようという記事です。 数式はわかるけど、イマイチ「標準偏差」の意味わからんという方にも直感的な理解がしてもらえるような説明もしていきますので、ぜひご覧ください。 (※ この記事では標準偏差の分母に $n$を使用しています。$n-1$を使用するケースも

    【統計学】初めての「標準偏差」(統計学に挫折しないために) - Qiita
  • 【数学】固有値・固有ベクトルとは何かを可視化してみる - Qiita

    線形代数に固有値という概念が出てきます。最初はイメージしにくいのでは、と思うのですが重要な概念かつ、統計学でも頻繁に利用されるので、これもこの可視化シリーズとしてアニメーショングラフを書いて説明することを試みたいと思います。 このようなグラフの意味を読み解いていきます。 1.固有値・固有ベクトルとは? まず、固有値・固有ベクトルとはなんぞや。数式で表すと下記のことです。 ${\bf x}\neq {\bf 0}$の${\bf x}$で、行列Aをかけると、長さが$\lambda$倍になるような${\bf x}$の事を固有ベクトル, $\lambda$を固有値と言います。 知らない人は???で、これだけではよくわからないですね。 早速、グラフィカルな説明も交えて説明していきたいと思います。 2.行列Aによる線形変換 固有値・固有ベクトルの説明の前に、行列による線形変換について取り上げます。 例

    【数学】固有値・固有ベクトルとは何かを可視化してみる - Qiita
  • 1