タグ

数学に関するfan-tailのブックマーク (6)

  • なぜビンゴゲームで同じ数字を書いてはいけないのか

    先日、結婚式の二次会に招待していただきました。新郎・新婦ともに大学時代からの友人です。 歓談中にビンゴゲームが開催されました。私はビンゴゲームに完全に勝利にしたにも関わらず、景品をもらうことができませんでした。 あまりに理不尽な経験だったので、泣き寝入りしてたまるものかと思い、Qiita に初投稿してみようと思います。 ビンゴゲームとは ビンゴはビンゴですよね。「ビンゴ!」って叫ぶやつです。 今回のビンゴゲームは $3 \times 3 = 9$ マスのカードを利用しました。縦・横・ナナメに一直線に 3 マス穴を開ければ「ビンゴ!」になります。 実は、各参加者には白紙のビンゴカードが配られ、各テーブルにはビンゴゲームのルールが書かれた紙が配られていました。下記がその内容です。 真ん中のマスに "free" と書いてください。(i.e. 真ん中のマスはゲーム開始時に穴を開けて良い) それ以外

    なぜビンゴゲームで同じ数字を書いてはいけないのか
    fan-tail
    fan-tail 2018/10/03
    最後に導入部分は創作ですって書いて…ない。やったんすかこれ…(´・ω・`)
  • 高校数学の美しい物語 | 定期試験から数学オリンピックまで800記事

    ∣x∣<1|x| < 1∣x∣<1 なる実数 xxx について, arcsin⁡x=x+16x3+340x5+⋯arccos⁡x=π2−x−16x3−340x5−⋯\begin{aligned} \arcsin x &= x + \dfrac{1}{6} x^3 + \dfrac{3}{40} x^5 + \cdots\\ \arccos x &= \dfrac{\pi}{2} - x - \dfrac{1}{6} x^3 - \dfrac{3}{40} x^5 - \cdots \end{aligned}arcsinxarccosx​=x+61​x3+403​x5+⋯=2π​−x−61​x3−403​x5−⋯​ となる。 この記事では逆三角関数のうち逆正弦関数(arcsin⁡\arcsinarcsin)と逆余弦関数(arccos⁡\arccosarccos)のマクローリン展開を計算します

    高校数学の美しい物語 | 定期試験から数学オリンピックまで800記事
  • 大学以降の「数学」の勉強に役立つ動画のまとめ - 勉強メモ (大学の講義動画や,資格試験の対策)

    大学の数学を,Youtubeの動画で独学できる。 実際に大学で講義している様子を録画したビデオなので, 板書を読めるし,先生の説明も聞ける。 大学生の定期試験・院試対策や,社会人になってからの復習にもどうぞ。 これがあれば,通勤・通学中の電車内で, あるいはベッドの中にいても 時間や場所を問わずに勉強ができる。 なお,大学の「物理学」の動画はこちら。 ※PDF形式の講義ノートはこちらのサイトに集約されているので,動画とあわせて活用しよう。 大学の初年度 統計学 物理数学 微分方程式 解析学・応用 代数学・応用 圏論 幾何 その他数学 数学検定 大学の初年度 行列論と「線形代数」の講義を動画で学ぶ。Youtubeで大学の授業を勉強 大学の数学で,一変数と多変数の微積分の講義を,Youtubeの動画で学ぶ 統計学 統計学の基礎の講義を,Youtube動画で。明治薬科大の「DAIWA統計学」 生

    大学以降の「数学」の勉強に役立つ動画のまとめ - 勉強メモ (大学の講義動画や,資格試験の対策)
    fan-tail
    fan-tail 2015/06/30
    少なくとも線形代数だけはっ…いやあと微積も思い出しておかないと今後ヤバそう…
  • おすすめの数学本を紹介していく - コノユビ

    2015年04月14日02:25@konoyubtmr おすすめの数学を紹介していく 生活・雑学 4コメント 1 : 名無しさん@おーぷん 2015/04/13(月)22:33:37 ID:7Zb たまには数学でも読もうぜ 2 : 名無しさん@おーぷん 2015/04/13(月)22:34:28 ID:Xug たまに読んでもわからんだろ 読むならどっぷりやりこまないと 4 : 名無しさん@おーぷん 2015/04/13(月)22:35:14 ID:7Zb >>2 そうやって肩肘張らず、気軽に読んでもらえたらなと 3 : 名無しさん@おーぷん sage 2015/04/13(月)22:34:37 ID:7Zb 自分は数学素人です 得意ですらなく難しい問題とかわかりません 初心者が初心者に薦めるならこんな、というのを並べてみました 全部読んでいるというわけではなく、図書館屋で斜め読

    おすすめの数学本を紹介していく - コノユビ
  • 大人が学び直す数学

    当サイトは、数学が苦手な人による、数学が苦手な人のためのオンライン学習ノートです。 他の多くの数学サイトとは違って、数学な得意な人が早足に通りすぎてしまうような、各駅停車の疑問を取り上げることをこころがけています。 運営者が実際に勉強しながら書いてますので、更新は不定期です。また、基人の学習記録を公開したもので、専門家の書いたものではありませんので、勘違いしていて間違っていることもあります。内容をすべて鵜呑みにせず、ネット上の多くの資料と同様、テーマに対する理解を深めるための読み物のひとつとして、複眼的な視点で活用いただくようお願いします。

    fan-tail
    fan-tail 2015/01/30
    (´・ω・`)忘れすぎ。
  • なぜ-1と-1をかけると+1になるのか [物理のかぎしっぽ]

    中学校でマイナスの数を勉強すると,『 』であることを習います.これは,マイナスの数の掛け算をするために覚えなければならない関係式ですが,なぜマイナスとマイナスを掛けるとプラスになるのか,理由はよく分からないままに丸暗記した人が多いのではないでしょうか.しかし,何か釈然としないものが残った人も多いと思います.私が中学校のときには,数学の先生が『借金を人に貸すと,財産になっちゃうってことですね.ワッハッハ』などと説明して済ましてしまいました.この先生は,きちんと数学が分かっていたのか,いま考えると疑問です. 人に「貸す・借りる」をそれぞれ と ,「もらう・あげる」をそれぞれ と に対応させるとすれば,確かに,借金の借用書を人に肩代わりさせることと,マイナス掛けるマイナスがプラスになることの間に,なにか対応関係があるような気がします.しかし,「肩代わりさせる」という行為を「掛け算」という演算に対

  • 1