タグ

ブックマーク / www.jst.go.jp (2)

  • 鉄鋼のように強い汎用プラスチックの創製

    <研究の背景と経緯> 高分子材料は軽量・安価・高成形性といった利点から広く利用され、世界年産約3億トン弱にも達する重要な材料です。しかし、強度や耐熱性などの材料特性が金属などより著しく劣るために高度な性能要求に応えることができません。その原因は、結晶にならない部分の比率(非晶率注4))の高さにあります。結晶性高分子は長いひも状分子ですが、融液(液体)中で毛玉のように互いに絡み合う部分が多いために、これらが薄い板状結晶にしかなれず、非晶と結晶が層構造を成し「球晶」というゴルフボールのような結晶体になります(図1)。つまり、球晶内には結晶にならず、固化しただけの非晶が半分以上残ってしまうのです。そこで世界中の科学者たちは結晶化度注5)増大の方策を探求してきましたが果たされず、現在に至っています。その難点を補完するために、高強度と高耐熱性などを特長とするスーパーエンジニアリングプラスチック(スー

  • 電子スピン状態を光パルスで完全制御することに成功― 超高速量子コンピューターの実現への一里塚 ―

    <研究の背景> 量子コンピューターを実現するためには、量子情報を保存するスピンもしくは擬スピン(2準位原子など)を自由に制御する技術を開発しなければなりません。そのために、例えば、ジョセフソン素子注4)や電子スピンを用いた量子コンピューターに対しては、2準位間のエネルギー差に共鳴するマイクロ波が用いられてきました。また、原子や分子、イオンを用いた量子コンピューターに対しては、狭帯域の2のレーザー光が用いられてきました。いずれの方法でも、スピン制御には数ナノ秒~数十ナノ秒以上の時間を必要とします。スピンに保存された量子情報は、通常1マイクロ秒~10マイクロ秒(1マイクロ秒=10-6秒)のデコヒーレンス時間注5)で失われてしまいます。従ってこの場合、量子情報が消失してしまう前にできる演算の最大回数は1,000回以下に制限されます。これが量子コンピューターを実現する上での最大の障害でした。山

    fluoride
    fluoride 2008/11/23
    まったくわからないがブクマ
  • 1