タグ

mathに関するgoseiのブックマーク (12)

  • 代数幾何学の研究

    1. ノーベル賞とフィールズ賞 科学においてもっとも権威ある賞の1つとして「ノーベル賞」を挙げることができる。この賞について改めてここで詳しい説明をする必要はないと思うが、ノーベル賞の対象分野に数学が入っていないことをご存知だろうか。一説によると、ある数学者とアルフレッド・ノーベルの仲が悪かったことが原因だといわれている。一方で、「数学のノーベル賞」といわれる「フィールズ賞」という賞がある。フィールズ賞は4年に1度開催される国際数学者会議(ICM)において、顕著な業績を上げた原則40歳以下の数学者(2名以上4名以下)に授与される。日人のフィールズ賞受賞者は小平邦彦先生、広中平祐先生、森重文先生の3名である。この3名の専門分野がタイトルにある「代数幾何学」である。すべての日人フィールズ賞受賞者の専門分野が代数幾何学であることか

    代数幾何学の研究
  • わかりにくい線形代数を操作可能な図で表現することで簡単に理解できる無料の教科書「Immersive Math」

    「Immersive Math」は、数学のうちベクトルや行列などの計算を研究する分野である「線形代数」についてインタラクティブな図を用意することでわかりやすさを向上させた無料の教科書サイトです。 Immersive Math https://immersivemath.com/ila/index.html サイトのトップページはこんな感じ。「完全にインタラクティブな図を備えた世界で最初の線形代数」と述べられています。 中央に表示されている三角形の図はインタラクティブで、左上をクリックすることで回転・停止を切り替えられるほか、各頂点をクリックしてドラッグ&ドロップすることで位置を調整可能。自由に図を編集できるため理解しやすいというわけです。 ページをスクロールすると目次が現れました。まずは「Preface(序文)」をクリック。 「『百聞は一見に如かず』という言葉の通り、たくさんの言葉を重ね

    わかりにくい線形代数を操作可能な図で表現することで簡単に理解できる無料の教科書「Immersive Math」
  • 数学は哲学? - Sokratesさんの備忘録ないし雑記帳

    「大学で数学は哲学になる」と主張する人がいる*1.特におもしろくもないし,適切な比喩とも思えないんだが,一部の頭がフワフワしている層や視野の狭い人々,数学を神聖なものに祭りあげたい何とかコミュニケーターなどには受けるらしく,ごくまれに信じている人がいる*2. ただ,実際問題,違いを説明しろと言われるとワリと困る.「リンゴとゾウの違いは何ですか」と聞かれているようなものなので,当然なのだが,「いや,見た目も大きさも全然違うじゃん」と言いたくなる.問題は「リンゴとゾウ」なら一目瞭然なのだが,「学問」は目に見えないので,どちらもわかっていない人には誰かが説明しないと違いがはっきりわからない点にある*3.「リンゴの触り心地はツルツルだし,ゾウも(牙が)ツルツルだから,きっと似たようなものだろう」と言う盲人のようなものである*4. この記事の目的は「数学と哲学の違い」という直観的には明らかだが,ちゃ

    数学は哲学? - Sokratesさんの備忘録ないし雑記帳
  • 仏紙が唸る「数学を世間に広める能力で、時枝正にかなう者はいない」 | 直感の逆を突き、驚かせ、人の未知への欲求を刺激する

    スタンフォード大学の教授で数学者の時枝正(ときえだ・ただし)は、「おもちゃ」を使って数学や物理の定理を解き明かす。スープ皿や木のレール、大きなコインを手に、「ショー」とも呼べそうな講義をいかにも楽しげに始めるその姿に、聴衆は一瞬にして心を惹きつけられるという。 数学者には二つのタイプがいるという──。一つは、チョークを握り黒板に向かう、理論派タイプ。もう一つは、フェルトペンとホワイトボードを使う、どちらかというと応用数学系の人である。 その伝でいうと、時枝正は第三のタイプの数学者である。しかもこの第三のタイプは、世界広しといえども彼一人だけの可能性がある。 時枝は仕事道具をどれも煎の空箱から取り出すのだが、箱は「すべて同じブランドのもの」なのだそうだ。たとえばその中身は、見かけはそっくりなのに、転がるものと転がらないものがある二つの不思議な構造物。ひもや輪ゴム、クリップの扱い方は、まるで

    仏紙が唸る「数学を世間に広める能力で、時枝正にかなう者はいない」 | 直感の逆を突き、驚かせ、人の未知への欲求を刺激する
  • 長岡亮介先生の数学|旺文社

    長岡亮介(ながおかりょうすけ)先生の著作物などに関する情報サイトです。「長岡先生の集中講義」、 「長岡の教科書」、「総合的研究」の追加情報を用意しています。また、動画などを通して、長岡先生の魅力を伝えていくつもりです。

  • 数学・物理学の知識を理解するための「足りない知識」を「ツリー構造」で掘り下げていける学習サイト「コグニカル」レビュー

    分野が広く、さまざまな知識を求められる数学や物理学。これらの知識をツリー構造により分からないところまでひたすら掘り下げて、基礎の基礎から学ぶことができる学習サイトが「コグニカル」です。一体何かどう学べるのか?ということで、実際にコグニカルを使ってみました。 コグニカル https://cognicull.com/ja コグニカルのトップページはこんな感じ。「ばねの弾性力による位置エネルギー」「位置エネルギー」など、数学・自然科学・工学のさまざまな知識が353個並んでいます。 試しに「熱振動」をクリックすると、「熱振動とは、分子など、原子の集合で生じる原子の振動のことです。」と、熱振動について記述されたページが表示されました。また、分子と原子が振動している様子のイメージがアニメーションで表示されています。 読み進めていくと、「説明が理解できない場合」は「以下の知識が不足している可能性がありま

    数学・物理学の知識を理解するための「足りない知識」を「ツリー構造」で掘り下げていける学習サイト「コグニカル」レビュー
  • 文系パパエンジニアが放送大学等でコンピュータサイエンス・数学を学んで理系学士を取りに行く話 - とあるCS学徒のブログ

    ※取りに行く話なのでまだ取ってません。 界隈ではコンピュータサイエンス(以下CS)を学ぶことが流行っていますが、これはとあるパパのとある一例です。どなたかの参考になれば。 こちらの通り申請致しました。 https://t.co/IDkVJAWjc2— Y (@wbspry) 2021年2月13日 誰? 事の経緯 なぜ大学でCS・数学を学びたいのか CS系学位を課す外資大企業たち CSできるマンへの憧れ 立ちはだかる数学の壁 dynamicなものよりstaticなもの ところで、CSって何? 選択肢と選択 なぜUoPeopleではなかったか 週次の人巻き込み課題が大変そう 単位移行が可能なのか(※当時は)よくわからなかった とはいえ なぜ帝京理工通信ではなかったか なぜJAISTではなかったか 学位授与機構との出会い 新しい学士への途(単位累積加算制度)とは 学位取得までの流れ そして単位集

    文系パパエンジニアが放送大学等でコンピュータサイエンス・数学を学んで理系学士を取りに行く話 - とあるCS学徒のブログ
  • 高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog

    去年の12月頃から数学の学び直しを始めた。 職業柄少し専門的な、特に機械学習の方面の書籍などに手を出し始めると数式からは逃れられなかったりする。とはいえ元々自分は高校時代は文系で数学1A2Bまでしか履修していない。そのせいか少し数学へ苦手意識があり「図でわかるOO」とか「数学無しでもわかるOO」のような直感的に理解出来る解説に逃げることが多かった。実務上はそれで問題ないにしてもこのまま厳密な理解から逃げているのも良くないなと感じたのでもう少し先の数学に取り掛かることにした。 巷には数学の学び直しについての記事が既にたくさんある。それに自分の場合は何かの受験に成功した!とか難関の資格を取得した!というような華々しい結末を迎えている状態ではない。そんな中で自分が何か書いて誰の役にたつかもわからないが、少なくとも自分と似たようなバックグランドを持つ人には意味のある内容になるかもしれないので、どの

    高校レベルの数学から大学の教養数学くらいまでを独学/学び直した - razokulover publog
  • 三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita

    「他にこんなのがある」というのがあったら是非いっぱい教えてください! 歴史的に最も古くからある用途は「測量」でしょう。三角関数誕生のキッカケはまさに測量の必要性にありました。比較的日常生活でも見る機会がありそうな用途でしょうか。 ログハウス ケーキカット 震災時の家の傾き推定 現代では「波」としての用途が多いでしょうか。Twitter での様々な人のコメントを見ていても、 おっぱい関数 jpeg 画像 音声処理 といった具合に、波に関する話がかなり多いイメージです。これらの三角関数の使われ方を特集してみます。様々な分野に共通する三角関数の使い方のエッセンスを抽出したつもりですが、これでもかなり分量が多くなりました。摘みいするような感覚で読んでいただけたら幸いです。 2. 三角関数の 3 つの顔 最初に三角関数には大きく 3 つの定義があったことを振り返っておきます。以下の記事にとてもよく

    三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita
  • ある数が「○の倍数か」を見分けるための“万能”な方法

    ある数が割り切れるかどうか、つまりnの倍数であるかどうかを知りたい場面は結構たくさんある。分数を約分するときや、身近なところだと割り勘を計算するときなどだ。 場面の多さに比して、ふつう倍数の判定は難しい。例えば「64811は11の倍数か?」に瞬時に答えられる人はそう多くないはずだ。 ただし、いくつかの小さい整数に対しては、その倍数に関する法則が広く知られていて簡単に見分けられることがある。 例えば、2の倍数なら必ず一の位は2の倍数(偶数)になる。3の倍数であれば、各桁の数字を足し合わせると和が3の倍数になる(例:357→3+5+7=15は3の倍数)。特に3の倍数の判定法は簡単なので知っておくと便利だ。 ほかのいくつかの素数に対しても、簡単な判定法があるので以下の画像にまとめてみた。また、合成数の判定はこれらを組み合わせて行えばよい(例えば6の倍数は2と3どちらの倍数でもあることを判定するこ

    ある数が「○の倍数か」を見分けるための“万能”な方法
  • 30歳から始める数学 - SHOYAN BLOG

    この記事はMath Advent Calendar 2015 2日目の記事です。 前回の記事は515hikaruさんのMath Advent Calendar 2015 一日目 - 515 ひかるのブログ 日常編です。 とあることから、30歳にして数学を学び始めました。いまは毎日楽しく数学の書籍を読んだり方程式を解いたりしています。 記事では、僕と同じようにもう一度数学を学びたいなと思っている人向けに、数学の魅力を再発見する方法を紹介します。 30歳にして数学を学び始めたきっかけ きっかけはプログラマのための数学勉強会です。 とあるご縁でこの勉強会で発表することになり、そこから数学を学び直しました。 内容については、以下の記事を参照ください。 プログラマのための数学勉強会@福岡に登壇してきました プログラマのための数学勉強会@福岡#2に登壇してきました この数学勉強会で数学を勉強すること

    30歳から始める数学 - SHOYAN BLOG
  • 数学は言葉 - hiroyukikojima’s blog

    一般の人が、数学を読んで理解しようとするとき、二つの障壁を乗り越えねばならない。一つは、語られている概念が抽象的であること、そしてもう一つは、それを語っている「言葉」が数式というこれまた「読みにくい言語」だ、ということだ。書き手が後者を突破する道は二者択一である。第一の道は、数式を使わず、極力日常の言語で表現すること。第二の道は、あえて「数式言語の読み方をレクチャーする」ことである。でも、第二の道を選択する書き手はほぼ皆無である。なぜなら、相当しんどい作業になる上、それだけの努力がの売り上げに貢献するとは考えられないからだ。かくいうぼくも、第二の道を試みたことは一回しかない。それは『文系のための数学教室』講談社現代新書で、「ルベーグ積分」を題材に、積分記号の読解の作法を伝授した部分だ。そこでのメッセージは、「数式には独特の読解の仕方がある。記号を記号のまま受け入れようとせずに、自分の

    数学は言葉 - hiroyukikojima’s blog
    gosei
    gosei 2009/11/23
    第一の道は、すでに読み物な気がする
  • 1