タグ

algorithmとAlgorithmに関するgymnoのブックマーク (74)

  • 講義資料 配列解析アルゴリズム特論I 情報生命科学基礎/演習 他 -渋谷哲朗

    平成20年度 東京大学大学院 情報理工学系研究科・コンピュータ科学専攻 配列解析アルゴリズム特論I 4/10 4/17 4/24 5/1 5/8 5/15 5/22 5/29 (The problem to be reported - in English) 6/5 6/12 6/19 7/3 7/10 7/17 東京大学 理学部・情報科学科 情報科学特別講義3 (情報科学とバイオインフォマティクス) 6/10 7/15 7/22 東京大学大学院 新領域創成科学研究科・情報生命科学専攻 情報生命科学基礎/演習 5/27 6/17 京都大学大学院 薬学研究科・医薬創成情報科学専攻 情報科学概論 6/3 中央大学大学院 理工学系研究科・物理学専攻 物理学特別講義第二 TBA 創価大学工学部 生命情報工学科 TBA TBA 戻る Copyright (c) 2004- Tetsuo

  • 「Googleを支える技術」に載っていない日本語検索エンジンの技術 - nokunoの日記

    Web検索エンジンは、大きく分けて次の2つからなります。利用者からのクエリーを直接受ける検索サーバ検索サーバから利用されるインデックス世界中のWebサイトを集めてきて解析し、インデックスに登録するクローラインデックスというのは、利用者から検索される単語をあらかじめ列挙しておいて、単語からWebサイトのURLを引くのに必要なデータ構造のことです。検索エンジンはGoogleを支える技術にあるように、「下準備があればこその高性能」なわけです。 インデックスを作成するためには、あらかじめWebページの内容を単語に分割する必要があります。英語では単語と単語の間をスペースで区切るため、この作業はさほど難しくありません。しかし日語では、単語の境界はそれほど自明ではないため、日語特有の処理をする必要があります。 日語の文から単語に分解するには、形態素解析を使う場合と、N-gramを使う場合があり、そ

  • http://codezine.jp/a/article/aid/86.aspx

    gymno
    gymno 2008/08/07
    google maps ストリートビューに関連して
  • Karetta|Cパズルプログラミング-再帰編

    はじめに基的過ぎること階乗fact1.c (2)fact2.c (1)fact3.c組合せcomb1.ccomb2.ccomb3.c四則演算1行入力の動作確認expr1.cトークン処理の準備expr2.cトークンがやっと動き出すexpr3.c (1)数式もどきexpr4.c優先順位を考えた式の処理 (1)expr5.c整理expr6.c8クイーンボードの準備queen1.cqueen2.cクイーンを左端に置いてみようqueen3.cqueen4.cクイーンを8個置いてみようqueen5.cqueen6.cqueen7.c効き筋のチェックqueen8.cqueen9.cqueen10.cデバッグをする羽目にqueen11.cqueen11.txtqueen12.cqueen12.txtqueen13.c動くようになったので整理整頓queen14.cqueen15.c対称移動の研究対象移動の

  • カーネル法 正定値カーネルを用いたデータ解析

    1 2004 11 24~26 Final version. Nov.26, 2004 2 I 1. 2. � � 3. � � PCA CCA . � � Bochner � representer 3 II 5. � � � ICA, 7. 4 g(x) Parzen window ∑ = − = N i i x x g N x p 1 ) ( 1 ) ( 5 1. � 6 � ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ⎛ = N m N m m X X X X X X X L M M L L 1 2 2 1 1 1 1 m N 7 x1 x2 z1 z3 z2 ) 2 , , ( ) , , ( 2 1 2 2 2 1 3 2 1 x x x x z z z = 8 � xi Φ(xi) zi H Ω H Ω H → Ω Φ : 9 � H = feature space

  • Support Vector Machine

    人間には卓越した学習能力が備わっている.人間は目で見たり,耳で聞いたものが何であるかをいとも簡単に認識できる.また,未知の環境に適応する能力も優れている.それに対し,コンピュータは,与えられた指示(プログラム)どおりに高速に計算を行う能力においては優れているが,学習能力という点においては,人間とは比較にならない. そこで,人間のような学習能力をもった機械(モデル)を作るための学習理論が発達してきた.その代表的な成果の1つとして,多層パーセプトロンが挙げられる.多層パーセプトロンは1980年代に開発され,これまで多方面に応用されてきた.しかし,望ましくない局所最適解への収束,中間層の素子数の選択など,いくつかの問題点がある. サポートベクターマシン(Support Vector Machine:SVM) は,このような問題を解決した学習機械として知られている.サポートベクターマシンとは,1

  • [メモ] サポートベクターマシン(SVM) - 机上の空論

    サポートベクターマシン(以下 SVM) とは ・ニューラルネットワークの一種 ・教師ありクラスタリング SVM の基的な考え方 ・元々2クラスの線形分離手法として提案される ・単層パーセプトロンに似ているが、SVM はマージン最大化という手法をとっているのがポイント。 ・マージン最大化とは、超平面と学習データの隙間となるマージンをなるべく大きく取ろうというもの。 (ここでいう超平面とは、2つのクラスにぶった切る平面のこと) ・ちなみに超平面と、ちょうどマージンの分だけ離れている学習データをサポートベクトルという。 ・このマージン最大化という考えを取り入れることによって、テストデータの識別精度を高めている。 SVM の発展 ・線形分離不可能な問題への対応 - ソフトマージン(学習データが多少マージンにくい込んだり、反するクラスの空間にくい込んだりしても許す)で対応

  • ガベージコレクションの実装法と評価

    1.はじめに プログラミング言語とはシステム化する対象物を抽象化し、コンピュータで処理可能なコードを記述するために用いる人工言語である。プログラミング言語はコンピュータの機械語と一対一の対応をもったアセンブラから始まり、コンパイラを用いて機械語に翻訳することを前提としたコンパイラ言語、インタプリタと呼ばれるプログラムがソースコードを解釈し実行するスクリプト言語と、記述できる抽象度を高める方向へと進化してきた。 プログラミング言語はその存在理由から、より抽象度の高い記述が行えること、すばやい開発を行える事が求められる。抽象度の高い記述とは、プログラムがどういう処理を行うか(HOW)ではなく何の処理を行うか(WHAT)を記述しやすい構文、機能を持っていることを、すばやい開発とは記述性の高さ、コードの密度の高さ、バグの発生しにくい構文、機能を持っていることをさす。 この抽象度の高い記述、すばやい

  • 「ウルフラム氏のチューリングマシン」を20歳の学生が証明 | WIRED VISION

    「ウルフラム氏のチューリングマシン」を20歳の学生が証明 2007年10月26日 サイエンス・テクノロジー コメント: トラックバック (0) Brandon Keim 2007年10月26日 複雑系理論の権威であるStephen Wolfram氏が、あるチューリングマシンを提案し、これが考えられるありとあらゆる計算問題を解く能力を持つ、考え得る限りで最も単純なコンピューターであることを証明するよう呼びかけた。 それからわずか47日後、イギリスのバーミンガム大学コンピューター科学部の学生Alex Smithさん(20歳)が、見事にこれを証明して見せた。 チューリングマシンは、コンピューターの世界に偉大な貢献をした数学者、アラン・チューリングが1936年に提案したものだ。 今ではハードウェアをソフトウェアと切り離すことは当たり前になっているが、チューリングはこれを理論として考え出した最初の1

  • 連載:検索エンジンを作る|gihyo.jp … 技術評論社

    運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します⁠。個別にライセンスが設定されている記事等はそのライセンスに従います。

    連載:検索エンジンを作る|gihyo.jp … 技術評論社
  • 最小二乗法について

    最小二乗法は計測データの整理に使われる方法である。 n個のデータ(x1,y1),(x2,y2), .......(xn,yn)が得られたとする。 に最もフィットする直線をy=ax+bとすると、 でa,bが求められる。 以下詳しい解説が書いてあります。解説は上から順番に書いてありますが、適当に飛ばし読みしたいときは、以下をクリックしてください 最小二乗法の目的 最小二乗法の考え方 具体的な計算方法 一般的な場合 車が一定速度で動いているとする。それを測定して時間と位置との関係をグラフに表すと となる。 しかし、実際は測定誤差があるので、こんなふうにきれいに並ぶことはない。 こんなふうに並んだものに対して、エイヤっと線を引いてしまうわけである。 そして、この直線の傾きから車の速度を求める。 この、エイヤっと引いた線を、人力ではなく、もうすこしもっともらしく計算で決定しましょうとい

  • 目指せプログラマー!

    目指せプログラマー!にようこそ。 当サイトはこちらに引っ越しました。 お手数をおかけしますが、上記サイトへご移動くださいませ。

  • Spaghetti Source - アトキンのふるい

    ソースコード void sieve_of_atkin() { int n; for (int z = 1; z <= 5; z += 4) { for (int y = z; y <= sqrtN; y += 6) { for (int x = 1; x <= sqrtN && (n = 4*x*x+y*y) <= N; ++x) isprime[n] = !isprime[n]; for (int x = y+1; x <= sqrtN && (n = 3*x*x-y*y) <= N; x += 2) isprime[n] = !isprime[n]; } } for (int z = 2; z <= 4; z += 2) { for (int y = z; y <= sqrtN; y += 6) { for (int x = 1; x <= sqrtN && (n = 3*x*x+y*

    gymno
    gymno 2008/04/05
    "エラトステネスのふるいよりも計算量の意味でも実用的な意味でも高速に動作する."
  • Google File System(GFS)技術メモ — ありえるえりあ

    * 参照した論文 + http://labs.google.com/papers/gfs-sosp2003.pdf * 特徴 + 安いPC(OSはGNU/Linux)で分散ファイルシステムを構築しています(*注1)。 + PCは壊れるという前提で設計しています(*注2)。このため、分散システムを構成するノードが壊れた時、データが失われないことと、自動で復旧できることに主眼を置いています。 + ファイルシステムを利用する側(アプリ)に、ある程度の想定を求めています。任意の利用ケースに対してそこそこのパフォーマンスを出す(=平均的に良い性能)のではなく、特定の利用ケースで性能を発揮できるように設計しています。 + 性能を発揮できる利用ケースは次のようなケースです。 ++ 主にサイズの大きいファイルを扱う(*注3)。 ++ ファイルへの書き込みは追記(append)が多い(ファイルの一部分を何度

  • Dictionary of Algorithms and Data Structures

    absolute performance guarantee abstract data type (a,b)-tree accepting state Ackermann's function active data structure acyclic directed graph: see directed acyclic graph acyclic graph adaptive heap sort adaptive Huffman coding adaptive k-d tree adaptive sort address-calculation sort adjacency-list representation adjacency-matrix representation adjacent admissible vertex ADT: see abstract data typ

  • Google Social Graph APIを徹底解剖 - builder by ZDNet Japan

    今回はGoogle Social Graph APIについて解説します。Google Social Graph APIの概要は、下記を参考にしてください。 http://code.google.com/apis/socialgraph/ まず、Google Social Graph APIとは何か?についてです。 Googleは、それこそ世界中の様々なページをインデックスしています。通常は、各ページのテキストをインデックス化して、検索エンジンとしてそのデータを活用していますが、Google Social Graph APIは、これらのページのXFN(XHTML Friends Network)もしくはFOAF(Friend Of A Friend)情報を利用します。 まずXFNとFOAFについてですが、これはどちらもソーシャルネットワークのリンク情報についての表現です。 XFNは、micr

    Google Social Graph APIを徹底解剖 - builder by ZDNet Japan
  • GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)

    GCアルゴリズム詳細解説 日語の資料がすくないGCアルゴリズムについて詳細に解説します トップページページ一覧メンバー編集 × GC 最終更新: author_nari 2010年03月14日(日) 20:47:11履歴 Tweet このWikiが目指す所 GCとは? GCを学ぶ前に知っておく事 実行時メモリ構造 基アルゴリズム編 Reference Counter Mark&Sweep Copying 応用アルゴリズム編 IncrementalGC 世代別GC スナップショット型GC LazySweep TwoFinger Lisp2 Partial Mark and Sweep -Cycle Collection- Mostly Parallel GC train gc MostlyCopyingGC(Bartlett 1989) TreadmillGC(Barker 1992)

    GC - GCアルゴリズム詳細解説 - livedoor Wiki(ウィキ)
  • ゲーマーでなくても仕組みぐらいは知っておきたいアルゴリズムx40

    高校生の時、数学の先生がこう言いました。 ゲームなんて、開発者が作ったルールの上で遊ばれるだけだ。 と。 その時、ゲーマーな自分はこう思いました。 ゲーマーは、開発者が作ったルールの上で遊ばれたい。 と。 というわけで、普段何気なくプレイしているゲームには、どのようなルール(アルゴリズム)があるのか。それを知るために、いろいろなゲームのアルゴリズムなどを解析しているページへのリンク集を作りました。 ほとんどのゲームのアルゴリズムは正式に発表されていないので、ユーザーの手による逆解析だったり、大学の研究による真面目な考察だったりします。(リンク先には、一部アルゴリズムと呼べないものも含まれています) 各種ゲームのプログラム解析 ドラクエ、FF、ロマサガのプログラム解析 DQ調査報告書(リンク切れ) ドラクエの物理ダメージ計算式は質的にどれも同じだが、細かい部分で微妙に違う RPG INST

    ゲーマーでなくても仕組みぐらいは知っておきたいアルゴリズムx40
  • ゲームつくろー!

    ゲームをする側から作る側へ。 どうせ作るなら気で行こう。 「ゲームつくろー」のコンセプトは「目指せ大規模ゲーム」 そして、目指せ出版(笑)

  • http://ja.doukaku.org/