タグ

algorithmとsearchに関するhadzimmeのブックマーク (2)

  • Latent Semantic Indexing - naoyaのはてなダイアリー

    情報検索におけるベクトル空間モデルでは、文書をベクトルとみなして線形空間でそれを扱います。この文書ベクトルは、文書に含まれる単語の出現頻度などを成分に取ります。結果、以下のような単語文書行列 (term document matrix) が得られます。 d1 d2 d3 d4 Apple 3 0 0 0 Linux 0 1 0 1 MacOSX 2 0 0 0 Perl 0 1 0 0 Ruby 0 1 0 3 この単語文書行列に対して内積による類似度などの計算を行って、情報要求に適合する文書を探すのがベクトル空間モデルによる検索モデルです。 見ての通り、単語文書行列の次元数は索引語の総数です。文書が増えれば増えるほど次元は増加する傾向にあります。例えば索引語が100万語あって検索対象の文書が 1,000万件あると、100万次元 * 1,000万という大きさの行列を扱うことになりますが、単

    Latent Semantic Indexing - naoyaのはてなダイアリー
  • 情報検索ことはじめ〜研究者編〜 - シリコンの谷のゾンビ

    昨年書いた教科書編が(僕にとっては)嬉しくて跳ね上がるほどブックマークされたので,調子に乗って第二弾を書いてみました.皆様ありがとうございます(ブックマークにがんばってくださいというコメントがあったのがめちゃくちゃ嬉しかったです).今回は研究寄りですが,少しでも誰かの役に立てば幸いです. 僕は網羅的にサーベイを,キーワード検索以外に主に二つの方法で行っています. 会議毎にサーベイ 研究者毎にサーベイ 1.はさておき,2.ですが,僕は研究者のDBLPをチェックしています.気になる論文の著者のDBLPを眺めると,知らなかった要チェックや!論文を拾うことができます. なので,一線で活躍する研究者の論文は定期的にチェックする必要があります. 今回はIR研究者の中でも,戦闘力が高く,この人は常にウォッチせねばという研究者の一部を紹介したいと思います. 下記は若輩の独断と偏見に基づくものです.一線で活

    情報検索ことはじめ〜研究者編〜 - シリコンの谷のゾンビ
  • 1