タグ

2018年6月29日のブックマーク (2件)

  • これから群論を学ぶ方のための入門講座 – びりあるの研究ノート

    物理学や情報科学を学ぶ中で数学の一分野である「群論」の知識が必要となる場面が多々あります。 しかしながら群論は抽象数学の入門的な分野であり、抽象数学に慣れ親しんだ方でないとなかなか厳しい物があると思います。 実は群論を学ぶためには微積分や行列・線形代数といった高度な前提知識は全く必要なく、 中学生程度の数学の知識さえあれば理解できるはずなのですが、 基的な考え方が非常に抽象的ですので、 東大の情報科学科の学生であってもかなり苦労しているようです(筆者調べ)。 確かに群論を系統的に学ぼうとすると抽象的な概念が多く、躓くとこも多いと思いますが、 情報科学や暗号理論で必要な最低限の知識のみに絞れば、さほど難しくはありません。 また、必要な前提知識も先程述べたように中学生レベルの数学の知識のみですので、 文系の方でも十分理解していただける内容だと思います。 そこで記事では、これから群論を学ぼう

    これから群論を学ぶ方のための入門講座 – びりあるの研究ノート
    htnhtn15
    htnhtn15 2018/06/29
    群って何
  • 虚数単位 - Wikipedia

    複素数平面において、虚数単位 i は、原点中心の90°回転の作用を表し、2乗すると −1 になる。 虚数単位(きょすうたんい、英: imaginary unit)は、2乗して −1 になる数である: 虚数単位 i は −1 の平方根の一つである。 i は実数でない。実数単位 1, 虚数単位 i は R 上線型独立である。 実数体に虚数単位 i を添加すると、四則演算ができる数の体系が得られる。この拡大体の元を複素数という。 虚数単位 i は実数でないため、感覚的には存在しない数ととらえられがちであるが、実数 C の直積集合の元として、実数の対(ハミルトンの定義)、行列表現、多項式環の剰余環などにより実現できる。 複素数平面では、虚数単位 i は、直交座標表示すると (0, 1) に当たる数である。 複素数に i を(左から)作用させると、複素数平面上で原点中心の 90° 回転になる。特に、

    虚数単位 - Wikipedia
    htnhtn15
    htnhtn15 2018/06/29
    虚数単位は、複素数・四元数の範囲を、実数部分と虚数部分に分けた時の、後者の方の基本単位である