タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

algorithmとprogrammingとaiに関するjjzakのブックマーク (5)

  • [NLP][機械学習] 言語モデル覚え書き - tsubosakaの日記

    この文章について 最近言語モデル方面にも少し興味があるので自分の知識を整理する意味で書いてみた。NLPは専門ではないので、おかしなことを書いてある可能性がありますがその場合はご指摘ください。 文章ではn-gramモデル、単語の出現確率がn-1個前の単語のみに依存するモデルを考える。 問題 who is * という文が与えられたときに*にくる文字の確率を求めることを考える。この場合だと*には例えばheが当てはまるかもしれないが, isが入ることはまずなさそうに思える。このことは文法的にも説明ができると思うが、文法のルールを作るのは大変だし、文法的に正しい単語の中でどれが出やすいかということはできない。 一方で機械学習を使った言語モデルの文脈では文法的知識を余り持たず、与えられたコーパスから自動的に出やすい単語/表現を学習する方針をとる。 最尤推定 一番簡単なモデルとしては最尤推定を使うもの

    [NLP][機械学習] 言語モデル覚え書き - tsubosakaの日記
  • 「言語処理のための機械学習入門」を参考に各種モデルに対するEMアルゴリズムを実装したよ - nokunoの日記

    Amazonにもレビューを書いたのですが、高村さんの「言語処理のための機械学習入門」を読みました。実はこのを読むのは2回目で、1回目はドラフト版のレビューをさせていただく機会があったのですが、そのときは「言語処理研究者のための機械学習入門」というタイトルで、ちょっと敷居が高いのではないかとコメントしたら「研究者」の部分が削られたという経緯があったりしました。 それはともかくとして、以前読んだときは時間もなくて実装までする暇はなかったのですが、今度はもうちょっとじっくり読みたいなということで、このブログに書いてみようと思います。EMアルゴリズムは教師なし学習を確率モデルと最尤推定でやろうとするときに必ず出てくる手法で、隠れ変数や欠損値を含む色々なモデルに適用できる汎用的なフレームワークになっています。一般的には混合ガウス分布の場合をまず説明して、それがk-means法の一般化した形になって

  • Support Vector Machines (SVM) in Ruby - igvita.com

    By Ilya Grigorik on January 07, 2008 Your Family Guy fan-site is riding a wave of viral referrals, the community has grown tenfold in last month alone! First, you've deployed an SVD recommendation system, then you've optimized the site content and layout with the help of decision trees, but of course, that wasn't enough, and you've also added a Bayes classifier to help you filter and rank the cont

  • 計算的な深さと脳

    ニューロンが入力を受けてからスパイクを出すまでは早くとも数ミリ秒かかる。人間が反応するまでの時間は零点何秒かだから、入力と出力の間には最大に見積もっても数十段のニューロンが介在するだけである。(実際はもっと段数が低いだろう。) 一方コンピュータの方は現在のネズミ以下の判別能力しかないような画像認識をするにあたってさえ数千万サイクルの計算を行わなくてはならない。 だから、脳が物凄い並列計算をやっているに違い無い。ここまでは普通の話ね。 で、問題は「じゃ、物凄い並列な機械をつくったら脳の能力を再現できるのかよ」ということ。もちろん誰も答えをしらない。どんなアルゴリズムを使えば良いか分からないし。 人によっては絶望して「新しい物理法則を」とか「量子論的並列性」とか、「魂」とかに行っちゃう。 で、僕も答えは持って無いけど、この問題を考えるにあたって以下の「計算的大きさ」と「計算的深さ」の概念を

  • ニューラルネットワーク入門

  • 1