運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します。個別にライセンスが設定されている記事等はそのライセンスに従います。

以下の論文が面白かったので紹介したいと思います。Learning a Spelling Error Model from Search Query Logs Noisy Channel Modelによるスペル訂正エンジンスペル訂正には標準的なNoisy Channel Modelを使うことができます(最近は識別モデルも流行りのようです)。A Spelling Correction Program Based on a Noisy Channel ModelNoisy Channel Modelでは、入力が与えられたときの訂正候補の確率を以下のようにモデル化します。言語モデル はコーパスやクエリログから単語N-gram、文字N-gramなどを推定し、スムージングして利用することが一般的です。エラーモデル は入力と出力候補の編集距離をもとに計算することが多いです(他に共起頻度やクリックログを利
同時確率、条件付き確率からベイジアンアップデートまで。パラメトリック、ノンパラメトリック(データサイズが増えるにつれて、パラメータ数が対数オーダーで増える)のところは初めてだとたぶんわけわからないところで、ちょっと前で説明してみたけど、若干でしゃばりすぎた気がする。どうするべきかちょっと迷うところではある。難しい。 ベイジアンな考え方は、自分もちゃんと理解するまで3ヶ月はかかったので(パラメータの事前分布ってなんですか!!とか)、今日初めてという人はたぶんわけわからなかったかもなーと(宗教なので、最初は受け入れ難いものなんですよ、きっと)。コインの例のやつは、自分も最初よく分からなかったので、Rで事後分布がupdateされていく様子とかをRで書いたりしていました。 ベイズの事後分布と事後予測分布を出してみた - Seeking for my unique color. FSNLPの例は分か
【C.M.ビショップ「パターン認識と機械学習(PRML)」読書会の情報はこちら】 行列に関する操作は、R をマスターする基本です。関連する Tips を脈絡なくできるだけ集めたいと思います。お気づきの正統派・裏技テクニックをお寄せください。一部重複はむしろ好ましいと思います。 PRMLに出てくるアルゴリズムを実装するには行列演算が書きやすくないと辛いので、Rの記法を参考にしながら試行錯誤中。 夢見ている書式仕様 matrix(): 要素ベクトルを与えて行列を作る: matrix(1:12, nrow=3, ncol=4) → (%matrix (iota 12 1) :nrow 3 :ncol 4) → (%matrix (%: 1 12) :nrow 3 :ncol 4) matrix(1:12, nrow=3) # 自動的に ncol=4 とされる → (%matrix (%: 1 1
By Ilya Grigorik on January 07, 2008 Your Family Guy fan-site is riding a wave of viral referrals, the community has grown tenfold in last month alone! First, you've deployed an SVD recommendation system, then you've optimized the site content and layout with the help of decision trees, but of course, that wasn't enough, and you've also added a Bayes classifier to help you filter and rank the cont
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く