タグ

algorithmとprogrammingに関するkeloinwellのブックマーク (9)

  • NASAが宇宙規模の通信などで発生する損失にも耐えられるよう作った画像圧縮アルゴリズム「ICER」が誰でも利用可能に

    NASAは、「宇宙から地球に無線で画像を転送する」といったデータ損失の大きな状況に最適化した画像圧縮アルゴリズム「ICER」を開発しています。そんなICERをC言語のライブラリとして実装したものがGitHubで無料公開されています。 GitHub - TheRealOrange/icer_compression: Progressive, error tolerant, wavelet-based image compression algorithm https://github.com/TheRealOrange/icer_compression NASAは火星探査などのミッションで現地の様子を撮影した画像データを地球へ送信しています。異なる場所へデータを送信する際は、地球上での通信であってもデータの損失が発生しているのですが、地球と火星などの宇宙規模の通信ではデータの損失は非常に大き

    NASAが宇宙規模の通信などで発生する損失にも耐えられるよう作った画像圧縮アルゴリズム「ICER」が誰でも利用可能に
  • 機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介 - ABEJA Tech Blog

    はじめまして。ABEJAでResearcherをやらせていただいている白川です。 先日、化合物の物性推定をDeep Learningをつかって従来手法より300,000倍高速に処理するという論文がでました([1], [2])。この論文の手法は、Graph Convolutionというグラフ上に定義されたConvolution演算がベースとなっています。物性推定に限らず、グラフ解析全般を Deep Learning で上手にこなせるようになれば、Deep Learningのアプリケーションの幅がぐっと拡がり、さらなるイノベーションが起きそうな予感がします。 ICMLやNIPSなどの機械学習系の主要国際会議でも数年前からGraph Convolutionについての論文がちらほら出現しはじめており、とくに最近その勢いが増してきている印象があります。個人的にも最近(前から?)にわかにグラフづいてい

    機は熟した!グラフ構造に対するDeep Learning、Graph Convolutionのご紹介 - ABEJA Tech Blog
  • When Bad Things Happen to Good Scientists

  • 「巡回セールスマン問題」を解くアルゴリズムを可視化したムービー

    by Gaël Sacré いくつもの都市を移動するセールスマンが、すべての都市を最も効率よく(最小の移動コストで)移動できる方法を求める問題を「巡回セールスマン問題」といいますが、その解き方をビジュアル化したムービーがYouTubeで公開されています。 Traveling Salesman Problem Visualization - YouTube たとえば8つの都市があるとき、これを結ぶルートは5040通りが考えられます。 解法の一つが「欲張り法(Greedy Algorithm)」という、1つの都市から常に最寄りの都市へ移動しようと考える方法。 「最適」ではないものの、最適に近い答えを導き出してくれます。 ここで、組み合わせて使うのが「2-opt法」という方法。かなり単純なアルゴリズムで、2辺を繋ぎ直していきます。このとき、ルートに重なりがあると解消して新しいルートを作ります。

    「巡回セールスマン問題」を解くアルゴリズムを可視化したムービー
  • あらゆる数独パズルを解く

    Peter Norvig / 青木靖 訳 このエッセイでは、 あらゆる数独パズルを解くという問題に取り組む。制約伝播と探索という2つのアイデアを使うと、ごく簡単に解けるということがわかる(主要なアイデアはコードにして1ページたらずで、補足的なコードが2ページある)。 数独の記法と予備概念 最初に記法をいくつか決めておこう。数独パズルは81個のマス(square)からなる盤面を使う。数独ファンの多くはカラムを1-9で、行をA-Iでラベル付けしており、カラム、行、ボックスのような9個のマスの集まりをユニット(unit)と呼び、ユニットを共有するマスをピア(peer)と呼んでいる。パズルではマスのいくつかが空いており、他は数字が入っている。パズルの目的はこうだ。 それぞれのユニットのマスが1から9の数字の順列によって埋められるようにする。 つまり、1つのユニットに同じ数字が2度現れてはならず、そ

    keloinwell
    keloinwell 2011/09/04
    "数独は「人間の知性に対するDoS攻撃」なのだ。"
  • 「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」:最強最速アルゴリズマー養成講座(1/3 ページ) 典型的なアルゴリズムをたくさん知っている人間が最強か――? いいえ、典型的なアルゴリズムを知らなくても、違ったアプローチで答えに迫る方法はいくらでも存在します。短い実行時間で正確な答えを導き出せるかを考える習慣をつけましょう。 アルゴリズマー養成講座と銘打ってスタートした連載。もしかすると読者の方の興味は、はやりのアルゴリズムや汎用的なアルゴリズムを知ることにあるのかもしれません。しかし、今回は、いわゆる「典型的なアルゴリズム」を用いずに進めていきたいと思います。 なぜ典型的なアルゴリズムを用いないのか。それは、典型的なアルゴリズムばかりを先に覚え、それだけでTopCoderなどを戦っていこうとした場合、それに少しでもそぐわない問題が出た場合に、まったく太刀打ちできなくなってしまう

    「1000のアルゴリズムを持つ男」vs.「やわらか頭脳」
  • ぜひ押さえておきたいコンピューターサイエンスの教科書

    僕はバイオインフォマティクスという生物と情報の融合分野で研究を行っています。東大の理学部情報科学科にいた頃は同僚のマニアックな知識に驚かされたものですが、そのような計算機専門の世界から一歩外に出ると、それが非常に希有な環境だったことに気が付きました。外の世界では、メモリとディスクの違いから、オートマトン、計算量の概念など、コンピューターサイエンスの基礎知識はあまり知られていませんでした。コンピューターサイエンスを学び始めたばかりの生物系の人と話をしているうちに、僕が学部時代に受けた教育のうち、彼らに欠けている知識についても具体的にわかるようになってきました。 バイオインフォマティクスに限らず、今後コンピュータを専門としていない人がコンピューターサイエンスについて学ぶ機会はますます多くなると思われます。そこで、これからコンピューターサイエンスを学ぼうとする人の手助けとなるように、基礎となる参

  • 「物理法則を自力で発見」した人工知能 | WIRED VISION

    前の記事 「衛星成功に総書記は涙」:北朝鮮の核再開宣言とミサイル輸出 「物理法則を自力で発見」した人工知能 2009年4月15日 Brandon Keim Image credit: Science、サイトトップの画像はフーコーの振り子。Wikimedia Commonsより 物理学者が何百年もかけて出した答えに、コンピューター・プログラムがたった1日でたどり着いた。揺れる振り子の動きから、運動の法則を導き出したのだ。 コーネル大学の研究チームが開発したこのプログラムは、物理学や幾何学の知識を一切使わずに、自然法則を導き出すことに成功した。 この研究は、膨大な量のデータを扱う科学界にブレークスルーをもたらすものとして期待が寄せられている。 科学は今や、ペタバイト級[1ペタバイトは100万ギガバイト]のデータを扱う時代を迎えている。あまりに膨大で複雑なため、人間の頭脳では解析できないデータセ

  • 正規表現に見切りをつけるとき

    Perl, Rubyなど手軽に使えるプログラミング言語に慣れてくると、あらゆるテキストデータの処理に正規表現(regular expression)を使ってしまいがちです。 けれど実は、正規表現の処理能力を超えるフォーマットというのが存在します。その典型的な例が、XMLやJSONのように、入れ子になったデータフォーマットです。

  • 1