Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
![Pythonで非線形関数モデリング - Qiita](https://cdn-ak-scissors.b.st-hatena.com/image/square/33cd85da0dd3595d6de93bc1fc95db38677ed65b/height=288;version=1;width=512/https%3A%2F%2Fqiita-user-contents.imgix.net%2Fhttps%253A%252F%252Fqiita-user-contents.imgix.net%252Fhttps%25253A%25252F%25252Fcdn.qiita.com%25252Fassets%25252Fpublic%25252Farticle-ogp-background-afbab5eb44e0b055cce1258705637a91.png%253Fixlib%253Drb-4.0.0%2526w%253D1200%2526blend64%253DaHR0cHM6Ly9xaWl0YS11c2VyLXByb2ZpbGUtaW1hZ2VzLmltZ2l4Lm5ldC9odHRwcyUzQSUyRiUyRnFpaXRhLWltYWdlLXN0b3JlLnMzLmFtYXpvbmF3cy5jb20lMkYwJTJGNjg0MzIlMkZwcm9maWxlLWltYWdlcyUyRjE1MTk3ODIwMjQ_aXhsaWI9cmItNC4wLjAmYXI9MSUzQTEmZml0PWNyb3AmbWFzaz1lbGxpcHNlJmZtPXBuZzMyJnM9MTA5MThhNmIzNzFmMzZhOGMzZjg3NTliOGFmZmI2Mjk%2526blend-x%253D120%2526blend-y%253D467%2526blend-w%253D82%2526blend-h%253D82%2526blend-mode%253Dnormal%2526s%253Dac93d8e50aaf8e41e5355b32828d22e9%3Fixlib%3Drb-4.0.0%26w%3D1200%26fm%3Djpg%26mark64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTk2MCZoPTMyNCZ0eHQ9UHl0aG9uJUUzJTgxJUE3JUU5JTlEJTlFJUU3JUI3JTlBJUU1JUJEJUEyJUU5JTk2JUEyJUU2JTk1JUIwJUUzJTgzJUEyJUUzJTgzJTg3JUUzJTgzJUFBJUUzJTgzJUIzJUUzJTgyJUIwJnR4dC1hbGlnbj1sZWZ0JTJDdG9wJnR4dC1jb2xvcj0lMjMxRTIxMjEmdHh0LWZvbnQ9SGlyYWdpbm8lMjBTYW5zJTIwVzYmdHh0LXNpemU9NTYmdHh0LXBhZD0wJnM9YmI3Y2Y2ZjVkMTZmMjBlNTZkZmY1YWQyN2M1N2VlMWU%26mark-x%3D120%26mark-y%3D112%26blend64%3DaHR0cHM6Ly9xaWl0YS11c2VyLWNvbnRlbnRzLmltZ2l4Lm5ldC9-dGV4dD9peGxpYj1yYi00LjAuMCZ3PTgzOCZoPTU4JnR4dD0lNDBoaWswMTA3JnR4dC1jb2xvcj0lMjMxRTIxMjEmdHh0LWZvbnQ9SGlyYWdpbm8lMjBTYW5zJTIwVzYmdHh0LXNpemU9MzYmdHh0LXBhZD0wJnM9MWU2MDYyODM5MzY1NmQyZTdjZDkwNGE4YzI2Yzc1Yzg%26blend-x%3D242%26blend-y%3D480%26blend-w%3D838%26blend-h%3D46%26blend-fit%3Dcrop%26blend-crop%3Dleft%252Cbottom%26blend-mode%3Dnormal%26s%3Df0e03cc87e0d9781d1109b89bf1a7543)
#Pythonでのグラフ描画 Pythonチャートを描く場合の定番は「matplotlib」ですが、その見た目のやや野暮ったい感じと、 表記法のややこしさが指摘されています。 そこで、この記事ではMatplotlibの機能をより美しく、またより簡単に実現するためのラッパー的存在である、「Seaborn」の使い方を取り上げます。 Seabornについてと、初歩的な使い方については下記リンクをご覧ください。 ◆pythonで美しいグラフ描画 -seabornを使えばデータ分析と可視化が捗る その1 http://qiita.com/hik0107/items/3dc541158fceb3156ee0 #ヒートマップ seabornでは下記のように美しいヒートマップを描くことが出来ます (SeabornのTutorialサイトより抜粋) 見た目にもインパクトがあり、数字があまり得意でない人にもウ
Pandasのグラフ描画機能 この記事ではPandasのPlot機能について扱います。 Pandasはデータの加工・集計のためのツールとしてその有用性が広く知られていますが、同時に優れた可視化機能を備えているということは、意外にあまり知られていません。 この機能は Pandas.DataFrame.plot() もしくは Pandas Plot と呼ばれるものです。 Pandas Plotを使いこなすことが出来るようになれば、 データの読み込み、保持 データの加工 データの集計 データの可視化 というデータ分析の一連のプロセスを全てPandasで完結させることが出来る、つまり分析の「揺りかごから墓場まで」を実現することが出来ます。 Pandasのプロット以外の機能について この記事ではPandasのデータハンドリングなどに関わる機能は説明しません。 そちらにも興味がある方は下記の記事などを
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? この記事について Pythonでデータ分析を行う際に役立つセットアップを紹介します。 データ分析に興味がある方はこちらも合わせてどうぞ データサイエンティストに興味があるならまずこの辺りを見ておきな、って文献・動画のまとめ(随時追加) - Qiita 実行環境 Jupyter(旧iPython Notebook) http://jupyter.org/ インタラクティブ(対話的)なコード実行のための環境 データ分析に非常に適していて、慣れると他のIDEなどでは分析ができなくなる。 任意に分けたコードブロックごとに実行し、結果を都度表示出
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに ##本記事のターゲット 「 "データサイエンティスト"とか"統計"とか最近良く聞くし、興味あるけど、正直その分野それほど詳しいわけじゃねーし、どっから始めればいいんだよチキショーがっ」 って人に向けて描いた記事です。 つまりは X年前の自分が「あったらいいのにな」って思ったであろう記事です。 なので「俺はバリバリのデータサイエンティストだぜ」って人が喜ぶようなマニアックな内容について触れているような書籍などは載せていません。 「PRMLがないとか...基本のキだろ、あんたモグリかい?」 などと思われた方はこの記事から得られるこ
Pythonでのグラフ描画 Pythonチャートを描く場合の定番は「matplotlib」ですが、その見た目のやや野暮ったい感じと、表記法のややこしさが指摘されています。 そこで、この記事ではMatplotlibの機能をより美しく、またより簡単に実現するためのラッパー的存在である、「Seaborn」の使い方を取り上げます。 詳しくは下記リンクをご覧ください。 本記事では下記記事でのSeaborn、及びiris,tip,titanicのデータがインポートされている前提で進めます。 ◆pythonで美しいグラフ描画 -seabornを使えばデータ分析と可視化が捗る その1 http://qiita.com/hik0107/items/3dc541158fceb3156ee0 分布プロット ここではtipデータを使ってみます。 曜日ごとに、お客さんの会計(total_bill)がどう分布している
Pythonでのグラフ描画 Pythonチャートを描く場合の定番は「matplotlib」ですが、その見た目のやや野暮ったい感じと、表記法のややこしさが指摘されています。 そこで、この記事ではMatplotlibの機能をより美しく、またより簡単に実現するためのラッパー的存在である、「Seaborn」の使い方を取り上げます。 ◆ Overview of Python Visualization Tools http://pbpython.com/visualization-tools-1.html 上記の記事ではMatplotlibとSeabornについて下記のように書かれています。 matplotlibについて Matplotlib is the grandfather of python visualization packages. It is extremely powerful b
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く