PFNの海野裕也が2024/10/15に東大大学院「自然言語処理応用」にゲスト講師として登壇した際の講義資料です。

PFNの海野裕也が2024/10/15に東大大学院「自然言語処理応用」にゲスト講師として登壇した際の講義資料です。
新たにリリースされた Recraft V3 は、Hugging Face ベンチマーク・リーダーボードの txt2imge 分野で FLUX1.1[pro] よりも上位になり話題を呼んでいます。 Recraft V3 :…
最新の物体検出情報(2022/1/1追記) この記事も、3年近く前の記事となり、最新の情報から比べると情報が古くなってしまいました。最新の状況に関しては以下記事がとても参考になります。 以下の記事も、過去の流れなどは参考になりますし、まだ使える部分も多くあると思いますので、よろしければ参考にしてみてください。 物体検出をやってみる前に検出と認識の違い これまで、ディープラーニングを使って画像の認識を何度かやってきました(以下参照)。 画像認識の次は、物体検出に手を出して見たいなということで、ディープラーニングを使った物体検出に関して調べて試してみることにしました。 そもそも、物体検出って何で、認識と何が違うのかというと、そもそも認識という言うと結構広い意味になってしまって、画像のそのものが何かを判別するのは画像分類というのが正しそうです。つまり、私がやった上記の例は基本的には画像分類となり
ディープラーニングおじさん 私の会社には「ディープラーニングおじさん」がいます。「います」といっても私が勝手に一人で心の中でそう呼んでいるだけですが…ともかく、今日はその「ディープラーニングおじさん」が、機械学習経験ゼロから、最終的に会社を動かすまでの華麗なる軌跡を紹介したいと思います。 なお、会社に関する情報は、私の都合である程度、虚実入り混じった情報になることご了承ください。今回の話で伝えたいことに関しては、影響は無い範囲とは思っています。 ディープラーニングおじさんの華麗なる軌跡 自分のツイートを「ディープラーニングおじさん」で検索したら、最初に引っかかったのが2016年10月ころでした。もう1年半くらい前ですね。 自分も個人で少しだけディープラーニング試したりしてるので、ディープラーニングおじさんに少しだけ自分の知ってる情報を提供してみたけど、おじさん何も聞かずに特攻しててワロタw
「TensorFlow.js」公開、Webブラウザ上で機械学習の開発、学習、実行が可能に。WebGL経由でGPUも活用 TensorFlow.jsの基となったオリジナルの「TensorFlow」は、Googleが開発しオープンソースとして公開されている機械学習ライブラリです。Windows、Mac、Linuxなどに対応し、Python、C++、Java、Goなどに対応したAPIを備えています。 今回発表されたTensorFlow.jsはそのJavaScript版で、Webブラウザ上で実行可能。TensforFlow.jsのAPIはオリジナルTensorFlowのPython APIのすべてをサポートしているわけではありませんが、似た設計となっており、機械学習のモデルの構築、学習、学習済みモデルの実行が可能なほか、学習済みモデルのインポートも可能。 WebGLを通じてGPUを利用した処理の高
皆さん、Yahoo!検索大賞 2017はご覧になりましか? このアワードで大賞に輝くと、「今年の顔」の名誉を手に入れることができるんです。 そんな栄えある今年の大賞は、ブルゾンちえみとのこと。 他にも、俳優部門は高橋一生、女優部門は吉岡里帆、といった具合に各分野毎に受賞者がいます。 ところで、僕はあまりテレビを観ないので、誰が誰やらわかりません。 このままだと安心して2018年を迎えることができないので、画像を読み込んでそれが誰なのか判定するアプリが必要です。 一目見れば区別つきそうなものですが、僕の濁った目で直接見るよりも、機械に判定させた方がよいに決まっていますので、作ってみました。 実際の動きはこちらから確認できます。 今回はブルゾンちえみも含め、Yahoo!検索大賞の受賞者から以下の5人をピックアップし、判別できるようにしています。 ブルゾンちえみ(お笑い部門) 高橋一生(俳優部門
19日に行われた Kyoto.なんか #3 で発表・デモをさせていただいた内容まとめです。 はじめに: 検出器の重要性 アイドル顔識別 をずっとやっている中で、顔の識別・分類(Classification)はCNNを使って出来ているけれど まだ上手く出来ていない別のタスクがあって。 それが画像内からの顔領域の検出 (Detection, Localization)。 「画像内に写っている人物が誰であるか」を識別するためには、まずはその画像に写っている「顔」を検出する必要がある。 その検出された顔それぞれについて分類器にかけて「この顔は○○さん」「この顔は××さん」と分類していくことになるわけで。 分類器に与える入力画像を切り抜いて抽出するのにもまず顔領域を検出する必要があるし、その分類器を学習させるためのデータセットも、様々な画像から顔領域を検出して切り抜いてそれぞれに対してラベル付けする
デープラーニングはコモディティ化していてハンダ付けの方が付加価値高いといわれるピ-FNで主に工作担当のtai2anです。 NHKで全国放送されたAmazon Picking Challengeでガムテべったべたのハンドやロボコン感満載の滑り台とかを工作してました。 とはいえ、やっぱりちょっとディープラーニングしてみたいので1,2か月前からchainerを勉強し始めました。 せっかくなので線画の着色をしたいなーと思って色々試してみました。 線画の着色は教師あり学習なので線画と着色済みの画像のデータセットが(できれば大量に)必要です。 今回はOpenCVでカラーの画像から線画を適当に抽出しています。 抽出例 → カラーの画像を集めて線画を作ればデータセットの完成です。(今回は60万枚くらい使っています) ネットワークの形ですが、U-netという最初の方でコンボリューションする時の層の出
ちまたでは、機械学習がブームのようです。 が、、まったく時代についていけていません。 しかし、機械学習、特に自然言語処理に精通した人の採用にかかわる仕事をしている、、、 にもかかわらず、自然言語処理どころか機械学習が全く分からない。 これでは、いけない。ということで 「機械学習をたしなむ学生の皆さんと、ふわっと雑談ができるレベル」 を目指して、2017年正月明けから勉強を始めました。 ちなみに、どんなにキリが悪くても1日3時間まで!と決めています。 そもそも機械学習に興味関心があるわけではない やらなければならない他の仕事がある 家事育児が優先 なので、すこしでも無理すると続かないためです。 「AIで世界を変えられる!」 「人工知能で想像もできない未来が、、、」 みたいなご時世の中、ありえないほどの低テンションで淡々と勉強しているわけで 逆に、そういう意識低い系人間はそんなに多くないでしょ
以前から書いているDeep Learningによるアイドル顔識別の話の続き。 コツコツと顔画像収集とラベル付けを続けて、そこそこにデータが集まってきたので ここらでちゃんと性能評価をしてみよう、と。 データセットの作成 今回は、現時点で重複なく180件以上の顔画像が集まっている40人のアイドルを分類対象とした。 対象アイドル一覧 これらのアイドルに分類のラベルindexを振り(推してる順とかじゃなくてランダムにね)、それぞれから無作為に抽出した180件の顔画像をそれぞれラベルとセットでレコードを作り、シャッフルして30件ずつ6つのデータセットに分けて保存。 data-00.tfrecords data-01.tfrecords data-02.tfrecords data-03.tfrecords data-04.tfrecords data-05.tfrecords レコードは、以前の記
TensorFlowとは2015/11/9にオープンソース化されたGoogleの機械学習ライブラリです。この記事ではディープラーニングと言われる多層構造のニューラルネットワークをTensorFlowを利用して構築しています。 TensorFlowはPythonから操作できますがバックエンドではC++で高速に計算しています。macのPython2.7系環境でTensorFlowの上級者用チュートリアルを行い、手書き認識率99.2%の多層構造の畳み込みニューラルネットワークモデルの分類器を構築したときの作業メモです。特別な設定なしにCPU使用率270%メモリ600MByteとちゃんと並列計算してくれました。MNISTランキングを見ると認識率99.2%は上位のモデルとなるようです。 TensorFlowチュートリアル TensorFlowの初心者用と上級者用チュートリアル2つに取り組んでみました
ディープラーニング(深層学習)というのが流行っているそうです。すべての人類はディープラーニングによって実現されたAIに隷属する未来なんですってよ!!! こわーい。 そんなバラ色の技術、いっちょかみしておきたいですよね。 さて、オフィスで社長とダベっていたところ、「将棋プログラム面白そうだよね」という話になりました。お互将棋プログラムを作って闘わせようぜ、いぇー、と盛り上がり、勢いでコンピュータ将棋選手権に申し込みまでしてしまいました。 そんな経緯で、ディープラーニングをミリしら(=1ミリも知らない)な僕が、試しにディープラーニングを使って将棋のAIを書いてみたらいいやん、と思いついたのでした。将棋も、ハム将棋でハム8枚落ちで負けるレベルくらい。ダメじゃん。 ミリしらなので、「チェスで何かやってるヤツがいるだろう」とアタリをつけてググった結果、Erik Bernhardssonさんによる d
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く