Create visually consistent graphicsThe first generative AI design tool that lets users create and edit digital illustrations, vector art, icons, and 3D graphics in a uniform brand style.
画像生成AI「StableDiffusion」の進化が止まりません。昨年8月にオープンソースとしてリリースされてから、世界中のプロアマ問わず多数の人たちが様々な研究成果を反映させ、毎日と言っていいほど新機能を誰かが発表するという状況が起きています。 StableDiffusion登場当初は、画像の品質のランダム性が高く、構図やポーズなどを指定できないという弱点を抱えていました。1枚の画像をもとに画像を生成する「i2i(image2image)」である程度コントロールすることはできても、「キャラクターに特定のポーズをとらせる」といったことは非常に難しかったんですね。 その状況を一変させる新機能が今年2月に登場しました。その名も「ControlNet」。プロンプトによる制約を克服するための、とてつもないポテンシャルを持つ技術でした。Stable Diffusionに次ぐ「2度目の炸裂」と言って
Satisified CustomersWe are number 1 with millions of users and happy customers!
PICK Pick a bitmap image that you want to vectorize and drag and drop it onto the page. Bitmap images, such as JPEGs and PNGs, are represented as a grid of little squares called 'pixels', each with its own color. PROCESS We analyze, process, and convert your image from pixels to geometric shapes. The resulting vector image can be scaled to any resolution without getting blurry, and can be used to
memo.sugyan.com の記事の続き(?)。 ある程度の学習データを収集して学習させたモデルが出来たので、それを使って実際に色々やってみる。 StyleGAN2-ADA 学習 mapping出力と生成画像 生成画像の属性推定結果から潜在空間の偏りを抽出 表情推定 顔姿勢推定 髪領域推定 (顔解析) 年齢 (上手くいかず) 複合 Repository StyleGAN2-ADA 前回の記事でも書いたけど、厳選した16,000枚の画像を使って StyleGAN2-ADA を使って生成モデルを学習させてみた。 github.com これは StyleGAN2 から進化したもので、より少ない枚数からでも安定して学習が成功するようになっていて、さらにparameter数など調整されて学習や推論もより早くなっている、とのこと。 それまでのStyleGANシリーズはTensorFlowで実装され
Named Entity API Named Entity APIは、固有表現抽出を行うプロダクトです。 Conditional Random Fields(CRF)とRecurrent Neural Network(Bidirectional LSTM)の技術を組み合せて応用することで、辞書ベースではなく固有名詞・数値などの品詞を識別する機能を提供します。 Text Summarization API Text Summarization APIは、文章要約を行うAPIです。 このモデルでは、入力された文章の意味を読み取り、意味が遠い文章を自動で判断・抽出し、要約結果として出力することができます。 Image Generate API Image Generate APIは、Deep Convolutional Generative Adversarial Networks(DCGAN)
概要: 本研究では,畳み込みニューラルネットワークを用いて,シーンの大域的かつ局所的な整合性を考慮した画像補完を行う手法を提案する.提案する補完ネットワークは全層が畳み込み層で構成され,任意のサイズの画像における自由な形状の「穴」を補完できる.この補完ネットワークに,シーンの整合性を考慮した画像補完を学習させるため,本物の画像と補完された画像を識別するための大域識別ネットワークと局所識別ネットワークを構築する.大域識別ネットワークは画像全体が自然な画像になっているかを評価し,局所識別ネットワークは補完領域周辺のより詳細な整合性によって画像を評価する.この2つの識別ネットワーク両方を「だます」ように補完ネットワークを学習させることで,シーン全体で整合性が取れており,かつ局所的にも自然な補完画像を出力することができる.提案手法により,様々なシーンにおいて自然な画像補完が可能となり,さらに従来の
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く