Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
株価は企業の業績を示す定量的な指標として最もポピュラーなものと言えるでしょう。 株の投資においては、銘柄を選ぶ時株価指標の PER, EPS, PBR, BPS, ROE, ROA, 自己資本比率、流動比率等の数値が参考にされます。 しかし投資ではなく、ある企業における株価以外の何らかの情報と、定量的な数値として単純に株価と突き合わせるという場面では、とりあえず取引日各日の四本値だけを用意しておけば良さそうです。 四本値を取得するライブラリ JpStock は日本国内の株に対応しており、現在もメンテナンスされていて動作するライブラリです。 JpStock https://github.com/utahta/jpstock これはいわゆる Yahoo! ファイナンスのスクレイピングをするライブラリです。 銘柄に対する株価を取得する 銘柄コード (4 桁) を引数に .price メソッドを叩
この Qiita の連載記事ではデータ分析のための主要言語として Python を利用してきました。ところでみなさんは Python のコーディング規約 PEP8 をご存知でしょうか。 ソースコードスタイルガイド PEP8 ソースコードは一般に「書かれる時間」よりも「読まれる時間」の方が長い、そのような事実に基づいて、「スタイルを統一し読みやすいコードを書こう」というアイデアのもとに作られたのがこのガイドです。 Style Guide for Python Code http://legacy.python.org/dev/peps/pep-0008/ 本家は当然ながら英語ですが有志の方が日本語に翻訳してくださっています。 PEP8 日本語訳 https://github.com/mumumu/pep8-ja どちらにせよ Python を利用する方は必ず一読するべきかと思います。 自動的
R と Python の連携を考える 最近 R による基本的なデータプロッティングやファイル入出力の方法について説明しました。 データ分析の言語としては Python ですべてをやろうという傾向があるようですが、やはり過去の膨大な R による資産は魅力的でそう簡単に切り捨てられるものではありません。 よくあるケースとしては、部分的なデータ解析については R を流用したいが、全体的なプログラミングは Python で書きたいというシーンでしょう。また、プロッティングだけ R でおこないたいという場合もあるでしょう。こんなとき Python と R で連携できれば問題が一気に解決して便利です。 Python から R を利用するライブラリ PypeR かつては RPy2 というライブラリが使われていたようですが、最近使われており主流なのは PypeR です。 PypeR のインストール インス
機械学習界隈の情報収集方法 http://d.hatena.ne.jp/kisa12012/20131215/1387082769 いきなりですが上記の記事に機械学習に関する有力な情報源がまとまっています。まずはここを参考にするのが良いかと思います。ただ情報が多すぎですので、筆者は Wikicfp と arXiv.org あたりの論文、それにはてなブックマークをチェックしています。 また論文については機械学習の論文を探すにも良い情報がまとまっています。こちらも参考になります。 機械学習は日進月歩の世界ですので、最新の査読済み論文を追って概略だけでも理解する能力を身に付けると良いかと思います。 書籍としては次の 2 冊が聖書とも言える必読書で、本気で機械学習をやりたければ必ず参考になるかと思います。 パターン認識と機械学習 (上・下) http://www.amazon.co.jp/dp/4
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く