タグ

algorithmとMachineLearningに関するma_koのブックマーク (5)

  • プログラマのための文書推薦入門 (社内勉強会の発表資料) - y_uti のブログ

    勤務先の社内勉強会で、機械学習を用いた文書推薦*1に関する基的なことがらについて説明しました。その資料を公開します。 プログラマのための文書推薦入門 from y-uti 数学やコンピュータサイエンスを専門的に学んでいないエンジニアでも理解しやすいように、できるだけ数式を使わずに説明したつもりです。厳密性にはこだわっていないので、専門家からはあちこちツッコミを受ける内容かもしれません。 プログラマ向けということで、実際にコンピュータ上で動作を確認できるように、Wikipedia のデータを対象にして類似文書検索を行うスクリプトを作成しました。GitHub に置いてあります。 y-uti/document-recommendation · GitHub *1:推薦というより情報検索、類似文書検索という方が適切だったかもしれません。

    プログラマのための文書推薦入門 (社内勉強会の発表資料) - y_uti のブログ
  • Naive Bayesの実装 - EchizenBlog-Zwei

    < ---- < | > Naive Bayesの罠 > ================================================ Naive Bayes(NB,ナイーブベイズ)の実装についてメモ。 NBというのはベイズ則に基づく単純な分類器で lnP(Ci|D) = Σj{lnP(wj|Ci)} + lnP(Ci)で文書DがクラスCiに属する確率が得られるよ、というもの。(以下、Σiで添字iのすべての場合についての足し合わせを表す) これを実装する場合、まず手元にデータ集合を用意する。データ集合はクラスラベル(Ci)の付けられた単語(wj)、つまり(Ci,wj)のペアの集まり。例えば (甘い,りんご) (甘い,りんご) (甘い,りんご) (甘い,ハチミツ) (甘い,ハチミツ) (甘い,バナナ) (甘い,砂糖) (甘い,カレー) (辛い,カレー) (辛い,カレー)

    Naive Bayesの実装 - EchizenBlog-Zwei
  • BLOG::broomie.net: 機械学習の勉強を始めるには

    thriftとかhadoopなど,何やらいろいろと手を出してしまい,ここのところブログの更新が滞ってしまっていますが,今日は前から書きたかったトピックについて自分へのメモの意味も含めて記しておきたいと思います. はじめに 最近,といっても結構前からなのですが,海外のブログなどで「機械学習の勉強を始めるガイドライン」についてのエントリーがいくつか見られ,かつ,議論も少し盛り上がっています.僕は機械学習が好きなだけで,専門というにはほど遠いのですが,僕も一利用者としてはこのトピックに関してはとても興味があります. 機械学習というと,色々な数学的な知識が必要であったり,統計学や人工知能の知識も必要になったりしまったりと,専門的に学ぶ機会が無かった人にとっては興味が湧いてもなかなか始めるには尻込みしてしまうことかと思います.今日紹介するエントリーは,そんな方々にヒントになるような内容になっていると

  • 有限混合分布モデルの学習に関する研究 (Web 版)

    次へ: 序 論 有限混合分布モデルの学習に関する研究 (Web 版) 赤穂 昭太郎 2001 年 3 月 15 日学位授与(博士(工学)) 序 論 研究の背景と位置づけ 論文の構成 有限混合分布とその基的性質 定義 モジュール性 階層ベイズモデルとの関係 パラメトリック性とノンパラメトリック性 RBF ネットワークとの関係 学習における汎化と EM アルゴリズム 最尤推定 汎化と竹内の情報量規準 (TIC) 汎化バイアス 竹内の情報量規準 (TIC) 冗長性と特異性 EM アルゴリズム 一般的な特徴 一般的な定式化 独立なサンプルが与えられた時の混合分布の学習 独立な要素分布の場合 サンプルに重みがある場合 EM アルゴリズムの一般化 EM アルゴリズムの幾何学的解釈 正規混合分布の汎化バイアスの非単調性について はじめに Radial Basis Boltzmann Machine (

  • steps to phantasien(2008-08-14) Netflix Prize 外野席

    "集合知プログラミング" というが出たらしい. 私の積読には元の "Programming Collective Intelligence" があって, 途中まで読んだまま放置していたら日語訳が出てしまった. (オライリーのアンチパターンと命名.) 悔しいのでは処分. そのうち日語版で続きを読もう.... 興味を持っていたのは推薦エンジン(協調フィルタ)だった. 私の中では検索エンジンに匹敵するウェブのハイテクという位置付けなんだけど, 草の根には普及しておらず悲しい. 検索エンジンでの Hyper Estraier や senna に相当する協調フィルタの立ち位置は デッドヒートが予想される...とだいぶ前から思ってるんだけど, いまのところ閑古鳥気味. まったく, 出し抜くだけの実力があればなあ. 先の皇帝ペンギンでは, 一章にさっそく協調フィルタが登場する. 読んでみると

    ma_ko
    ma_ko 2009/03/03
    いろいろチームが手を組んでるんだな / 終わった時には本が出そう
  • 1