はじめに Python での数値計算の基盤をなす NumPy 、直感的なスライスやブロードキャスト、関数のベクトル適用など大変便利だ。 import numpy as np np.__version__ # '1.9.2' np.array([1, 2, 3]) # array([1, 2, 3]) np.array([1, 2, 3])[:2] # array([1, 2]) np.array([1, 2, 3]) + 1 # array([2, 3, 4]) が、用途によっては NumPy 標準ではその機能を実現できない場合がある。例えば、 配列とメタデータをひとつのクラスで扱いたい 配列への入力や型を制約/検証したい 自作クラスを NumPy の Universal Functions (ufunc) に対応させたい 新しい型 ( dtype ) を作りたい こういったとき、NumP