Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに この記事は以前作成した競艇予想のモデルをAWS Lambda上で使用し、 競艇予想APIを作成したときのお話です。 やっていることは単純ですが、これを実現するために私の夏休みをすべて費やしました(泣) ですので、私のようにAWS Lambdaで自身が作成した機械学習モデルを使用したいと 考えている方の助けとなれるように記事を書きました。 アジェンダ 1.使用したライブラリ、実行環境について 2.処理内容について 3.アーキテクチャ図について 4.競艇予想APIを作る上で困った点について 5.Serverlessについて 6.S
Google、ORMが生成するSQLが遅いときの調査を容易にする「sqlcommenter」をオープンソースで公開。Rails、Spring、Djangoなど主要なフレームワークに対応 SQL文を直接書かなくとも、自動的にSQL文を生成、実行してくれるORM(Object-Relational Mapper)は、プログラミングを容易にしてくれる技術としてRailsやHibernate、Springなどさまざまなフレームワークなどで活用されています。 一方で、ORMが生成するSQL文はときに複雑に、あるいは非効率なものとなり、データベース処理の遅さにつながることもあります。 このとき、SQL文の生成と実行を明示的にコードとして記述する必要がないというORMの特徴が、なぜデータベース処理が遅くなったのか、どのようなSQL文が生成され、そのどこに原因があるのか、といった調査を難しくている面があり
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く