証券取引所の高速化による 情報技術の導入 スパークス・アセット・マネジメント株式会社 水田孝信 先端的データベースとWeb技術動向講演会 第26回(2016/10/29)

はじめに 勾配ブースティング木の高速化はどうすればいいだろうと調べていたら、arxivで流れているのを見かけたのでメモ。 FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification https://arxiv.org/abs/1609.06119 https://github.com/thomaskeck/FastBDT Stochastic Gradient Boosted Decision Tree(SGBDT) 勾配ブースティングの各イテレーションで、学習データから非復元抽出でサンプリングしたデータを用いる https://statweb.stanford.edu/~j
Go1.5とGo1.6でGoのGCのレイテンシが大きく改善された.この変更について「ちゃんと」理解するため,アルゴリズムレベルでGoのGCについて追ってみた. まずGoのGCの現状をパフォーマンス(レイテンシ)の観点からまとめる.次に具体的なアルゴリズムについて,そして最後に実際の現場でのチューニングはどうすれば良いのかについて解説する. GoのGCの今 最初にGoのGCの最近の流れ(2016年5月まで)をまとめる. Go1.4までは単純なStop The World(STW)GCが実装されていたがGo1.5からは新たなGCアルゴリズムが導入された.導入の際に設定された数値目標は大きなヒープサイズにおいてもレイテンシを10ms以下に抑えることであった.Go1.5で新たなアルゴリムが実装されGo1.6で最適化が行われた. 以下は公開されているベンチマーク.まずはGo1.5を見る. Gophe
前編 (平衡二分探索木編) はこちら http://www.slideshare.net/iwiwi/2-12188757
Hi there! This webpage covers the space and time Big-O complexities of common algorithms used in Computer Science. When preparing for technical interviews in the past, I found myself spending hours crawling the internet putting together the best, average, and worst case complexities for search and sorting algorithms so that I wouldn't be stumped when asked about them. Over the last few years, I
いちいさんにお誘いいただいて、勉強会で発表をすることになりました。 InnoDB Deep Talk #1 : ATND おそらく初見では内容が難しいと思いますので、先に資料を公開しておきます。 プレゼンテーション資料 (PDF) テストデータ生成スクリプト (JdbcRunnerで利用します。) プレゼンテーション資料からリンクしているウェブサイトの一覧です。 MySQL Bugs: #64567: Last_query_cost is not updated when executing an unique key lookup Understanding and Control of MySQL Query Optimizer: Traditional and Novel Tools and Techniques: MySQL Conference & Expo 2009 - O'R
効率的な別解とか存在する問題もあるけど演習によさそうなやつをピックアップ。そのアルゴリズムじゃないと解けないわけではないって問題も多いので注意。(ただ演習するのには都合が良いかなと)※個人的難易度をつけてみました。とても主観的な難易度付けなので気にせず解いてみてください。深さ優先探索・Balls[☆]・Sum of Integers[☆]・The Number of Island[☆]・Block[★]幅優先探索・Mysterious Worm[★]・Cheese[★]・Seven Puzzle[★☆]・Stray Twins[★★]・Deven-Eleven[★★]・Summer of Phyonkichi[★★☆]ワーシャルフロイド法(For 全点対最短路問題)・Traveling Alone: One-way Ticket of Youth[★]・A reward for a Car
はじめに 大規模なデータを扱うアプリケーションでは、速度とともに作業領域量も大きな問題となります。作業領域がメインメモリに収まらない場合、スワッピングが発生し、大幅な速度低下につながります。そのため近年、データ構造は高速なだけでなく、作業領域量が小さいことも求められています。今回紹介するデータ構造は「操作付きbit vector(SUCcinct Bit Vector:sucBV)」です。sucBVは、圧縮索引やSuccinct Data Structureなど、データをコンパクトに表現する際に重要なデータ構造です。STLのvector<bool>と同様に、bit列情報B[0....n-1]を保存します。このbit列情報は前もって与えられ、変更が無いことを前提とします。sucBVは、次の二つの操作を定数時間でサポートします。 rank(p,bit)――B[0...p]中のbit(bitは1
今日は以前のエントリーで書くと述べたConsistent Hashingに関して語らせて頂こうかと思います。ただしConsistent Hashingはセミナーやカンファレンスなどでかなり語られていると思いますので、コンセプトに関しては深入りせず、実用性に着目したいと思います。 問題定義 分散されたキャッシュ環境において、典型的なレコードを適切なノードに格納するソリューションはkeyのハッシュ値に対しmodulo演算を行い、その結果を基にノードを選出する事です。ただし、このソリューションはいうまでもなく、ノード数が変わるとキャッシュミスの嵐が生じます。つまり実世界のソリューションとしては力不足です。 ウェブサイトのキャッシュシステムの基本はキャッシュがヒットしなかったらデータベースにリクエストを発行し、レコードが存在したらキャッシュしてクライエントに返すという流れです。ここで問題なのが一瞬
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く