タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Algorithmとcompetitiveprogrammingとprogrammingに関するmanabouのブックマーク (6)

  • 現役高校生が、AtCoderでレッドコーダーになるまでにやってきたこと。プログラミング上達の秘訣を全て教えます - Findy Engineer Lab

    こんにちは、はじめまして。筑波大学附属駒場高等学校 3 年生(今年 4 月から東京大学に入学予定)の米田優峻(@e869120)と申します。私は競技プログラミング競プロ)が趣味で、AtCoder・情報オリンピック・パソコン甲子園などの大会に出場しています。2021 年 3 月時点で、AtCoder では赤色(レッドコーダー)です。また、国際情報オリンピックの 2018 年/2019 年/2020 年大会で金メダルを獲得しています。*1 とはいえ、決して簡単にこの記録を手に入れられたわけではありません。何度も挫折と失敗を経験しながら自分のスキルを磨いた結果、競プロを始めてから 3 年後にはレッドコーダーになることができたのです。 今回は「わたしの選択」というテーマで寄稿の機会を頂いたので、私が中学 1 年生の秋に競技プログラミングを始めてからレッドコーダーになるまで、そして国際情報オリンピ

    現役高校生が、AtCoderでレッドコーダーになるまでにやってきたこと。プログラミング上達の秘訣を全て教えます - Findy Engineer Lab
  • 超高速!多倍長整数の計算手法【前編:大きな数の四則計算を圧倒的な速度で!】 - Qiita

    1. はじめに ~メインを読むための準備~ まず、大きな数の計算の話をする前に、少しコンピューターと計算回数について話しましょうか。 コンピューターは、現代ではソフトウェアやアプリケーションの開発に使われていますが、これには重要な背景があります。これは「計算がめっちゃ速いこと」です!人間なんかと比べたら、圧倒的な計算スピードを誇ります。 1-1. 人間の計算速度はどのくらい? まず人間はどのくらいの速度で計算できるでしょうか?速い人も遅い人もいると思います。 例えば、$628 \times 463$ の計算を、今やってみましょう。10 秒以内で計算できたらかなり速い方でしょう。この計算では、次のように「単純計算」を合計 28 回もしていることになります。 9 回の 1 桁 × 1 桁の掛け算 6 回の 1 桁 × 1 桁の足し算 13 回の繰り上がり計算 もし $628 × 463$ が

    超高速!多倍長整数の計算手法【前編:大きな数の四則計算を圧倒的な速度で!】 - Qiita
  • 競技プログラミングで頻出の「ダブリング」を解説する

    競技プログラミングでは頻繁に出てくる「ダブリング」という手法について説明しようと思います。 競プロをはじめて間もない人や、競プロ外の人に向けて書きたいと思います。 最初に予防線を張っておきますが、内容が正しいかどうかは保証しません。 繰り返し二乗法繰り返し二乗法という有名なアルゴリズムがあります。 例えば、3の100億(10^10)乗を計算せよと言われた時に、 1回1回計算していたのでは時間がいくらあっても足りません。 しかし繰り返し二乗法を使えば、log(100億)くらいの計算量で計算出来るようになります。 具体的にどういう仕組みかを説明するために より小さな場合として3の11乗を計算するとした時に、 3^11 = (3^8) x (3^2) x (3^1) と3^(2^k)の積に分解出来るならば、 11を1011と2進数で表した時の1の数分だけで計算が終わることになります。 (a^bは

    競技プログラミングで頻出の「ダブリング」を解説する
  • 競技プログラミングで解法を思いつくための典型的な考え方 | アルゴリズムロジック

    競技プログラミングの問題を解くためには2つのステップがあります。 問題で要求されていることを言い換える知っているアルゴリズムやデータ構造を組み合わせて解く 必要な(知っておくべき)アルゴリズムやデータ構造は色々なところで学ぶことができます。 しかし、「問題の言い換え」や「アルゴリズムを思いつく」というのは、非常に様々なバリエーションがあり、問題をたくさん解かないとなかなか身につきません。 そこで、この記事は以下のことを言語化し、練習のための例題を提示することを目標とします。 問われていることを、計算しやすい同値なことに置き換える方法アルゴリズムを思いつくための考え方競技プログラミングで「典型的」と思われる考え方 ※一部問題のネタバレを含むので注意 ※良く用いられるアルゴリズムやデータ構造については競技プログラミングでの典型アルゴリズムとデータ構造 を参考にして下さい。 入力の大きさ(制約)

    競技プログラミングで解法を思いつくための典型的な考え方 | アルゴリズムロジック
  • アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita

    今の場合は A さんが 31 歳の場合のストーリーでしたが、A さんが 20 歳~ 35 歳のうちのどの年齢であったとしても、似たようなストーリーで必ず 4 回の質問で当てることができます!(他の例も是非考えてみてください。) ちなみに、このような「真ん中で切ってどちらかに絞って行く」タイプのアルゴリズムには二分探索法という名前がついています。応用情報技術者試験でも頻出のテーマですので馴染みのある方も多いと思います。 1-2. つまり、アルゴリズムとは 上の年齢当てゲームという問題では、相手の年齢を当てる「方法・手順」を二分探索法に基づいて導きました。このようにアルゴリズムとは、 問題を解くための方法・手順 のことです。さて、アルゴリズムと聞くと「コンピュータ上で実装されたプログラム」のことを思い浮かべる方も多いと思いますが、必ずしもコンピュータと関係がある必要はなく、日常生活でも多々登場

    アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita
  • ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回はソートについて記します。 0. はじめに データ構造とアルゴリズムを学ぶと一番最初に「線形探索」や「ソート」が出て来ます。これらのテーマは応用情報技術者試験などでも頻出のテーマであり、アルゴリズムの Hello World とも呼ぶべきものです。 特にソートは、 計算量の改善 ($O(n^2)$ から $O(n\log{n})$ へ) 分割統治法 ヒープ、バケットなどのデータ構造 乱択アルゴリズムの思想 といった様々なアルゴリズム技法を学ぶことができるため、大学の授業でも、アルゴリズム関連の入門書籍でも、何種類ものソートアルゴリズムが詳細に解説される傾向にあります。記事でも、様々なソートアルゴリズムを一通り解説してみました。 しかしながら様々な種類のソートを勉強するのもよいが、「ソートの使い方」や

    ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita
  • 1