タグ

ブックマーク / qiita.com/drken (10)

  • アルゴリズム本、書きました! - Qiita

    最後に、17 章で PとNPに関する話題を解説し、世の中には「効率的に解くアルゴリズムを設計することができそうにない難問」が多数あることを見ます。18 章で、これらの難問に取り組むための方法論をまとめます。 競プロをやっている方向け 扱っている題材の難易度については、こんな感じのイメージです! チーター < 書 = 螺旋 < 蟻 難易度が近い螺旋は、スタンスが異なる部分もありますので、よい形で共存できたら、という想いです。 螺旋と比べると、「動的計画法」「貪欲法」「二分探索法」などの設計技法に関する話題をより重視しています 螺旋は「ライブラリを揃えていく」という思想なので、設計技法よりもライブラリになるものを重視する立場です 書では、紙面の都合で「計算幾何学」と「整数論」には触れられませんでしたが、これらは螺旋には載っています 2-2. 書の対象読者 書は、「アルゴリ

    アルゴリズム本、書きました! - Qiita
  • AtCoder 版!蟻本 (初級編) - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 0 はじめに プログラミングコンテストチャレンジブック (通称、蟻) は日競技プログラミングの普及に多大な貢献を果たしています。多くの競技プログラマたちが蟻を手に取りながらコンテストの世界に没入して行きます。しかしながら発売から 6 年以上経過する間に競技プログラミング界隈には大きな変化がありました。蟻的に影響が大きいのは以下の点です: POJ が国内ではあまり使用されなくなった (計算速度が遅いなど) AtCoder 上で問題を解くことが盛んになった 今回はこの完全解決を試みます。具体的には、蟻に載っている例題たち (ほと

    AtCoder 版!蟻本 (初級編) - Qiita
  • 動的計画法超入門! Educational DP Contest の A ~ E 問題の解説と類題集 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 0. はじめに: 非常に素敵な DP の入門コンテンツ 待ちに待ったコンテストの到来です!!!!! DP (動的計画法) はアルゴリズムの登竜門というべき難所ですが、いくつか問題を解いて行くとパターンのようなものが見えて来ます。まさに「習うより慣れろ」の世界で、たくさん問題を解いて行くうちに、DP な問題の解法を一言で言えるようになって来ます。 典型を学ぶ方法論として、その最も典型的なシンプルな形をした問題をそのまま吸収してしまうのは 1 つの有効な方法だと思います。それにふさわしいシンプルな問題たちを集めた DP コンテストが先日開か

    動的計画法超入門! Educational DP Contest の A ~ E 問題の解説と類題集 - Qiita
  • ゲームを解く!Educational DP Contest K, L 問題の解説 - Qiita

    0. ゲームを解くとは 世の中には将棋や、囲碁や、オセロのような複雑で難しいゲームから、マルバツゲームや、割りばしゲームや、立体三目並べのような比較的単純なゲームまで、たくさんの種類のゲームがあります。 この種の二人プレイのボードゲームにはある共通の特徴があります。それは 双方が最善を尽くした場合において、「先手必勝」か「後手必勝」か「引き分け」かが予め決まっている。 そして無限の計算時間と計算機資源さえあれば、それを容易に解析できる。 という点です。このように 「先手必勝」か「後手必勝」か「引き分け」なのかを解析する その必勝手順を求める できれば + α として初期盤面だけでなく、すべての局面について「先手勝ち」か「後手勝ち」か「引き分け」かも特定して最善手も求める という営みが「ゲームを解く」ということであり1、それができたならばそのゲームを「完全に理解した」ということができます。

    ゲームを解く!Educational DP Contest K, L 問題の解説 - Qiita
  • 三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita

    「他にこんなのがある」というのがあったら是非いっぱい教えてください! 歴史的に最も古くからある用途は「測量」でしょう。三角関数誕生のキッカケはまさに測量の必要性にありました。比較的日常生活でも見る機会がありそうな用途でしょうか。 ログハウス ケーキカット 震災時の家の傾き推定 現代では「波」としての用途が多いでしょうか。Twitter での様々な人のコメントを見ていても、 おっぱい関数 jpeg 画像 音声処理 といった具合に、波に関する話がかなり多いイメージです。これらの三角関数の使われ方を特集してみます。様々な分野に共通する三角関数の使い方のエッセンスを抽出したつもりですが、これでもかなり分量が多くなりました。摘みいするような感覚で読んでいただけたら幸いです。 2. 三角関数の 3 つの顔 最初に三角関数には大きく 3 つの定義があったことを振り返っておきます。以下の記事にとてもよく

    三角関数は何に使えるのか 〜 サイン・コサイン・タンジェントの活躍 〜 - Qiita
  • アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita

    今の場合は A さんが 31 歳の場合のストーリーでしたが、A さんが 20 歳~ 35 歳のうちのどの年齢であったとしても、似たようなストーリーで必ず 4 回の質問で当てることができます!(他の例も是非考えてみてください。) ちなみに、このような「真ん中で切ってどちらかに絞って行く」タイプのアルゴリズムには二分探索法という名前がついています。応用情報技術者試験でも頻出のテーマですので馴染みのある方も多いと思います。 1-2. つまり、アルゴリズムとは 上の年齢当てゲームという問題では、相手の年齢を当てる「方法・手順」を二分探索法に基づいて導きました。このようにアルゴリズムとは、 問題を解くための方法・手順 のことです。さて、アルゴリズムと聞くと「コンピュータ上で実装されたプログラム」のことを思い浮かべる方も多いと思いますが、必ずしもコンピュータと関係がある必要はなく、日常生活でも多々登場

    アルゴリズムとは何か!? ~ 文系理系問わず楽しめる精選 6 問 ~ - Qiita
  • 計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。今回は計算量オーダーの求め方について書きます。 0. はじめに 世の中の様々なシステムやソフトウェアはアルゴリズムによって支えられています。Qiita Contribution ランキング作成のために用いるソートアルゴリズムのような単純なものから、カーナビに使われている Dijkstra 法、流行中のディープラーニングに用いられている確率的勾配降下法など、様々な場面でアルゴリズムが活躍しています。アルゴリズムとはどんなものかについて具体的に知りたい方には以下の記事が参考になると思います: アルゴリズムとは何か ~ 文系理系問わず楽しめる精選 6 問 ~ アルゴリズムを学ぶと $O(n^2)$ や $O(n\log{n})$ や $O(2^n)$ といった計算量オーダーの概念が登場します。こうした記法を見ると

    計算量オーダーの求め方を総整理! 〜 どこから log が出て来るか 〜 - Qiita
  • ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita

    NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回はソートについて記します。 0. はじめに データ構造とアルゴリズムを学ぶと一番最初に「線形探索」や「ソート」が出て来ます。これらのテーマは応用情報技術者試験などでも頻出のテーマであり、アルゴリズムの Hello World とも呼ぶべきものです。 特にソートは、 計算量の改善 ($O(n^2)$ から $O(n\log{n})$ へ) 分割統治法 ヒープ、バケットなどのデータ構造 乱択アルゴリズムの思想 といった様々なアルゴリズム技法を学ぶことができるため、大学の授業でも、アルゴリズム関連の入門書籍でも、何種類ものソートアルゴリズムが詳細に解説される傾向にあります。記事でも、様々なソートアルゴリズムを一通り解説してみました。 しかしながら様々な種類のソートを勉強するのもよいが、「ソートの使い方」や

    ソートアルゴリズムを極める! 〜 なぜソートを学ぶのか 〜 - Qiita
  • 統計検定 1 級に合格する方法 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに: 統計学の重要性 NTT データ数理システムでリサーチャーをしている大槻 (通称、けんちょん) です。 今回は統計検定 1 級について記します。 統計検定とは日統計学会による公認の資格であり、統計に関する知識や活用力を評価するものです。 日常的に大量のデータが溢れている昨今、データ分析機械学習に対するニーズは最高の高まりを見せています。最近では何も考えずともただデータを入力するだけでデータ分析機械学習手法を実行してくれるツールも多数出回るようになりました。 データ分析機械学習を実際に遂行するにあたって、統計学は強力な基

    統計検定 1 級に合格する方法 - Qiita
  • 典型的な DP (動的計画法) のパターンを整理 Part 1 ~ ナップサック DP 編 ~ - Qiita

    はじめに --- DP は役に立つ はじめまして。NTTデータ数理システムでアルゴリズムを探求している大槻 (通称、けんちょん) です。 好きなアルゴリズムは最小カットやマッチングですが、会社ではなぜか「DP が好きな人」と呼ばれています。 巷ではよく「DP なんて実務では使わない」といった言説が定期的に流れますが、そんなことはないです。僕自身この 2 年間で DP が使える実務案件に 3 件くらい関わりました! それはともかくとして、DP を学び立ての方がよく抱く悩みとして「バリエーションが多すぎて混乱するし、統一的なフレームワークがほしい」というのがあります。確かに DP のバリエーションは非常に多岐にわたるのですが、そのほとんどが以下の 3 つのフレームワークで説明できると思います: ナップサック DP 区間 DP bit DP 今回はこのうちのナップサック DP について、とにかく

    典型的な DP (動的計画法) のパターンを整理 Part 1 ~ ナップサック DP 編 ~ - Qiita
  • 1