タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

Pythonとgraphとrに関するmanabouのブックマーク (2)

  • Python ユーザでも『データ可視化入門』で練習できるようにパッケージを作った + Plotnine との互換性ガイド - ill-identified diary

    概要 pysocviz が提供する機能 ggplot2 と同じようにできないところとその対策 aes() にクオートされてない変数を指定できない R のように改行できない ggplot2 で使えた色名が使えない ggplot2 で使えた linetype が使えない 文字化けの回避 ggrepel パッケージの利用 scales::percent などの単位・スケール指定 テーマや色パレットのプリセットを変更したい場合 subtitle/caption が表示されない 複数のグラフを連結できない hjust/vjust が使えない グラフ内の図形やテキストの大きさのバランスがおかしい geom_smooth/stat_smooth で一般化加法モデル (GAM) による平滑化ができない geom_quantile の method 指定ができない geom_smooth/stat_smoo

    Python ユーザでも『データ可視化入門』で練習できるようにパッケージを作った + Plotnine との互換性ガイド - ill-identified diary
  • Jupyter-notebook の作図ライブラリ比較 - Qiita

    時は戦国 Python には作図ライブラリがたくさんあります。 最もデファクトスタンダードに近く歴史も古い作図ライブラリは matplotlib で間違いないでしょうが、それでも R における ggplot2 ほどの地位は確立していないように思います。 特に、Jupyter-notebook 上ではインタラクティブなグラフを表示するニーズがあり、そこでは静的なグラフよりもさらにライブラリが割拠している印象があります。何がどう違うのかよくわかりません。 そこで今回は代表的な作図ライブラリの Jupyter-notebook 上での 違いについて簡単にまとめます。 注意 各ライブラリはいずれも細かくグラフのスタイルを設定可能で、やろうと思えば同じような見た目のグラフを生成することも可能ですが、今回はできるだけ何も設定せずにプロットした時のグラフを使います。 今回試すライブラリたち matplo

    Jupyter-notebook の作図ライブラリ比較 - Qiita
  • 1