タグ

algorithmとssdに関するmanabouのブックマーク (1)

  • SSDで道路の損傷を検出した - Qiita

    結果 図3に学習の経過を示します. 図上部が位置誤差(location loss)とクラス分類誤差(confidence loss),そしてその合計(overall)を表しています. 図下部はvalidationデータサンプルに対するクラスごとのAverage Precision (AP)と,全クラスに対するmean Average Precision (mAP)です. 図3 SSD(VGG16)での学習経過 Exponential shiftによりlearning rateが小さくなった点(80000 iteration)において,lossが一気に下がっているのがわかります.100000 iteration以降は精度も飽和しています. 最終的なmAPは0.561を記録しました. デフォルトのパラメータで学習した割には安定して精度が出たので,これをベースラインとしてアーキテクチャを変更し,

    SSDで道路の損傷を検出した - Qiita
  • 1