タグ

autoencoderに関するmanabouのブックマーク (4)

  • 線形回帰を1つ1つ改造して変分オートエンコーダ(VAE)を作る - 作って遊ぶ機械学習。

    こんばんは. 今日は統計や機械学習において最も基となる手法である線形回帰から出発し,1つ1つモデルや学習方法に変更を加えていき,最終的に深層学習の分野で非常に良く使われている生成モデルである変分オートエンコーダ(variational auto-encoder,VAE)*1*2を導いていきたいと思います. 2014年に発表されたVAEは,勾配近似を得るためのreparametrization trickや,効率的に潜在変数を近似推論する認識モデル(recognition model, inference model)の導入,確率的勾配法(stochastic gradient descent,SGD)の2重適用など,様々なアイデアが散りばめられている確率的生成モデルです.背景としては,当時ニューラルネットワークを用いて画像を生成するといったアプローチが(CNNを使った識別などと比べて)そ

    線形回帰を1つ1つ改造して変分オートエンコーダ(VAE)を作る - 作って遊ぶ機械学習。
  • Kerasで学ぶAutoencoder

    Kerasの公式ブログにAutoencoder(自己符号化器)に関する記事があります。今回はこの記事の流れに沿って実装しつつ、Autoencoderの解説をしていきたいと思います。間違いがあれば指摘して下さい。また、Kerasの公式ブログはKerasでの実装に関してだけでなく、機械学習自体についても勉強になることが多く、非常におすすめです。 今回の記事では様々なタイプのAutoencoderを紹介しますが、日語ではあまり聞き慣れないものもあるかと思いますので、今回は名称を英語で統一したいと思います。 目次 イントロダクション Undercomplete Autoencoder Sparse Autoencoder Deep Autoencoder Convolutional Autoencoder Denoising Autoencoder まとめ イントロダクション Autoencod

    Kerasで学ぶAutoencoder
  • 深層学習 を 用いた 異常値検知 手法まとめ 〜 (Denosing) AutoEncoder, LSTM, TDA(Topological Data Analysis) + CNN - Qiita

    オーソドックス な アプローチ(一般的手法) まず は、以下 が よくまとまっている。 株式会社クロスコンパス・インテリジェンス(2016.10.5)「NVIDIA GPU TECHNOLOGY CONFERENCE JAPAN 2016 Industry Deep Learning」 異常値予測 を 行う アプローチ としては、以下 が 一般的な考え方 の ようだ。 (データ量の多い)正常時のデータ挙動の特徴パターンを学ばせて、 新規データが上記の特徴パターンから乖離している場合を、異常とみなす 上記のアプローチをとる理由 は、「異常発生時のデータ」の取得可能件数 は、「正常時のデータ」 に 比べて、取得できるデータの件数 が 圧倒的に少ない から である。 上記のスライド で 挙げられている AutoEncoderモデル や LSTMモデル を 採用し、 AutoEncoderモデル

    深層学習 を 用いた 異常値検知 手法まとめ 〜 (Denosing) AutoEncoder, LSTM, TDA(Topological Data Analysis) + CNN - Qiita
  • Variational AutoEncoder

    Nov 11, 201613 likes14,756 viewsAI-enhanced description 1. The document discusses probabilistic modeling and variational inference. It introduces concepts like Bayes' rule, marginalization, and conditioning. 2. An equation for the evidence lower bound is derived, which decomposes the log likelihood of data into the Kullback-Leibler divergence between an approximate and true posterior plus an expec

    Variational AutoEncoder
  • 1