タグ

mathとnnに関するmanabouのブックマーク (3)

  • The math of neural networks - Marshall Shen

  • TensorFlow Tutorialの数学的背景 − TensorFlow Mechanics 101(その2) - めもめも

    何の話かというと enakai00.hatenablog.com 上記の記事では、隠れUnitが2個という、世界で最もシンプルなニューラルネットワークを構成しました。 これをちょこっとだけ、拡張して遊んでみます。 隠れUnitを増やす それぞれの隠れUnitは平面を直線で分割するわけですので、隠れUnitを増やせば分割線がどんどん増やせます。 前回のコードでは、下記の部分で隠れUnitの個数を指定していたので、これを変えてためしてみます。ここでは、4個にしてみます。 hidden1_units = 4 はい。予想通り、境界線がより複雑になりました。隠れUnitの数をどんどん増やすことで、どれほど複雑な関数でも表現できてしまいます。 ちなみに、上図の左側では、確率0.5を境界にして○と✕の領域を単純に分割していますが、右側を見ると、○と✕が混在した領域では、きちんと中間的な確率になっているこ

    TensorFlow Tutorialの数学的背景 − TensorFlow Mechanics 101(その2) - めもめも
  • 計算グラフの微積分:バックプロパゲーションを理解する | POSTD

    はじめに バックプロパゲーションとは、ディープモデルの学習を計算可能にしてくれる重要なアルゴリズムです。最近のニューラルネットワークではバックプロパゲーション (誤差逆伝播法) を使うことで、最急降下法による学習が愚直な実装と比べて1000万倍速くなります。 例えば,バックプロパゲーションでの学習に1週間しかかからないのに対して、愚直な実装では20万年かかる計算になります。 ディープラーニングでの使用以外にも、バックプロパゲーションはさまざまな分野で使えるとても便利な計算ツールです。それぞれで呼ばれる名称は違うのですが、天気予報から、数値的安定性を分析する時にまで多岐にわたり使用できます。実際に、このアルゴリズムは、いろいろな分野で少なくとも20回は再開発されています(参照: Griewank(2010) )。一般的な用途自体の名前は”リバースモード微分”といいます。 基的に、この技術

    計算グラフの微積分:バックプロパゲーションを理解する | POSTD
  • 1