タグ

mathとwikipediaに関するmk16のブックマーク (18)

  • 円周率の歴史 - Wikipedia

    記事では、数学定数のひとつである円周率歴史(えんしゅうりつのれきし)について詳述する。 円周率 π は無理数であるため、小数部分は循環せず無限に続く。さらに、円周率 π は超越数でもあるため、その連分数表示は循環しない。その近似値は何千年にも亘り世界中で計算されてきた。 凡例[編集] [学]:数学的事実に関する発見・論争等 [法]:計算法の考案・改良等 [値]:計算・値の使用 [値](桁数):計算・値の使用(小数点以下の桁数の記録) [文]:文化・社会 年表[編集] 級数の発見前 — 13世紀まで —[編集] 紀元前2000年頃 [値] (2) 1936年にスーサで発見された粘土板などから、古代バビロニアでは、正六角形の周と円周を比べ、円周率の近似値として 3 や 3+1/7 = 22/7 = 3.142857…, 3+1/8 = 3.125 などが使われたと考えられている[1]。 紀

    円周率の歴史 - Wikipedia
  • 2520 - Wikipedia

    2520(二千五百二十、にせんごひゃくにじゅう)は自然数、また整数において、2519の次で2521の前の数である。 性質[編集] 2520は合成数であり、約数は1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 56, 60, 63, 70, 72, 84, 90, 105, 120, 126, 140, 168, 180, 210, 252, 280, 315, 360, 420, 504, 630, 840, 1260, 2520である。 約数の和は9360。 18番目の高度合成数であり、約数を48個持つ。1つ前は1680、次は5040。 約数を48個持つ最小の数である。次は3360。 高度合成数 n に対し、次の高度合成数が 2n まで現れない最大の n である。

    mk16
    mk16 2023/02/01
    >1から10までのすべての整数で割り切れる最小の数である←「エビオス」と「強力わかもと」の容器を共通化する場合に役立ちそう。
  • ルジンの問題 - Wikipedia

    ルジンの問題(Luzin - のもんだい)とは、正方形に関してニコライ・ルジン (Nikolai Luzin) が考えた問題である。 「任意の正方形を、2個以上の全て異なる大きさの正方形に分割できるか」という問題であり、ルジンはこの問題の解は存在しないと予想したが、その後いくつかの例が発見された。 最小の解[編集] 21個の正方形に分割 最小の解は21個で、A. J. W. Duijvestijn がコンピュータを使って発見し、それが最小の解であることを証明した[1]。1辺 112 の正方形を、一辺の長さがそれぞれ 2, 4, 6, 7, 8, 9, 11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42, 50 の計21枚の正方形で、隙間なく埋めつくすことができる。(オンライン整数列大辞典の数列 A014530) 正方形を上辺から順番

    mk16
    mk16 2019/04/20
    宇宙飛行士試験の無地パズルより難しい。
  • ウラムの螺旋 - Wikipedia

    ハーディ・リトルウッドのF予想[編集] ゴッドフレイ・ハロルド・ハーディとジョン・エデンサー・リトルウッドは1923年のゴールドバッハの予想に関する論文の中でいくつかの予想を述べているが(ハーディ・リトルウッド予想と総称される)、その中にはもし真であればウラムの螺旋の特に目立つ特徴について説明を与える可能性があるものが含まれている。ハーディとリトルウッドが“F予想”と呼ぶこの予想は、ベイトマン・ホーン予想(英語版)の特殊な場合であり、ax2 + bx + cの形をした素数の個数の漸近式について主張するものである。ウラムの螺旋の中央部から生じる、水平線と垂線に対し45°の角度をなす半直線上に乗る数字は4x2 + bx + cで表すことができ、ここにbは偶数である。水平もしくは垂直な半直線の上に乗る数字は先述の公式でbが奇数の場合である。F予想は、こうした半直線上に乗る素数の密度を見積もる公式

    ウラムの螺旋 - Wikipedia
  • 高度合成数 - Wikipedia

    高度合成数(こうどごうせいすう、英: highly composite number)とは、自然数で、それ未満のどの自然数よりも約数の個数が多いものをいう。 1から順に高度合成数を表すと 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680,…(オンライン整数列大辞典の数列 A002182) 例えば24は約数を(1, 2, 3, 4, 6, 8, 12, 24)と8個持ち、24未満で約数を8個以上持つ自然数は存在しないので、高度合成数である。なお1と2は合成数ではないが、高度合成数に含める。 クイゼネールロッド(英語版)を用いた最初の4つの高度合成数1, 2, 4, 6のデモンストレーション 素因数分解との関係[編集] 約数の個数は素因数分解で求まる。例えば 15120 = 24 × 33 × 5

    mk16
    mk16 2017/03/11
    一見、素数の対義語の合成数より対義語らしい感じがするけど、こっちは2が入ってる。
  • Pentagonal tiling - Wikipedia

    The 15th monohedral convex pentagonal type, discovered in 2015 In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the internal angle of a regular pentagon, 108°, is not a divisor of 360°, the angle measure of a whole turn. However, regular pentagons can tile th

    Pentagonal tiling - Wikipedia
  • グリゴリー・ペレルマン - Wikipedia

    グリゴリー・ヤコヴレヴィチ・ペレルマンまたはペレリマン(ロシア語: Григо́рий Я́ковлевич Перельма́н [ɡrʲɪˈɡorʲɪj ˈjakəvlʲɪvʲɪtɕ pʲɪrʲɪlʲˈman] ( 音声ファイル), Grigori Yakovlevich Perelman, 1966年6月13日 – )は、ロシア出身の数学者。ロシア系ユダヤ人[1]。 ミレニアム懸賞問題の一つであるポアンカレ予想を、多くの数学者が位相幾何学(トポロジー)の観点から挑戦する中、微分幾何学や物理学的アプローチで解決したことで知られる。 来歴[編集] サンクトペテルブルク生まれ。元ステクロフ数学研究所数理物理学研究室所属。専門は幾何学・大域解析学 (Global Analysis) ・数理物理学。電気技術者の父と数学教師の母の間に生まれる。幼少期に母親から数学の英才教育を受け、なおかつ自らも

    グリゴリー・ペレルマン - Wikipedia
    mk16
    mk16 2014/11/04
    >人付き合いを嫌い、ほとんど人前に姿を見せない人物であるが、学生時代までは笑顔の絶えなかった少年として周囲から記憶されている←脳のワーキングメモリー領域を酷使してコミュニケーション領域が痩せたのかも
  • ミレニアム懸賞問題 - Wikipedia

    ミレニアム懸賞問題(ミレニアムけんしょうもんだい、英: millennium prize problems)とは、アメリカのクレイ数学研究所によって、2000年に発表された100万ドルの懸賞金がかけられている7つの問題のことである。そのうち1つは解決済み、6つは2023年12月の時点で未解決である。ミレニアム賞問題、ミレニアム問題とも呼ばれる。 概説[編集] これらの問題は、それぞれの分野で非常に重要かつ難解な問題である[1]。 賞金を得るためには、査読つきの専門雑誌に掲載された後、二年間の経過期間を経て解決が学界に受け入れられたことが確認されなくてはならない[1]。なお、P≠NPとナビエ-ストークス方程式については、肯定的、否定的のいずれの解決に対しても賞金が与えられるが、他の問題については、否定的な解決は、それが問題の実効的な解決であるとみなされる場合に限り賞金が与えられる。否定的な解

    mk16
    mk16 2014/03/26
    >アメリカのクレイ数学研究所によって2000年に発表された100万ドルの懸賞金がかけられている7つの数学上の未解決問題のことである。
  • ヒュパティア - Wikipedia

    ヒュパティア(古代ギリシャ語: Ὑπατία, ラテン文字転写: Hypatia, 350年から370年頃 - 415年3月)は、東ローマ時代のエジプトで活動したギリシャ系の数学者・天文学者・新プラトン主義哲学者。ハイパティアともヒパティアとも呼ばれる。 人物[編集] 『ヒュパティア』(チャールズ・ウィリアム・ミッチェル画) アレクサンドリアのテオンの娘として生まれ、新プラトン主義の創始者プロティノスと新プラトン主義のシリアでの分派の創設者イアンブリコスの2人の学統を継いだ。400年頃、アレクサンドリアの新プラトン主義哲学の学校長に就任し、プラトンやアリストテレスの思想について講義を行った。当時のヒュパティアとの書簡、例えば、シュネシオス[注 1]がヒュパティア宛に出した書簡が7通現存している。 ヒュパティアは様々な書物に対して註解を著した。後世の『スーダ辞典』によれば、ディオファントスが

    ヒュパティア - Wikipedia
  • Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習

    このブログをはじめてから2年8か月と少し(ちょうど1000日くらい)が経った。 これまでに公開したエントリの数は299。 つまり、このエントリは記念すべき第300号!というわけ。 ブログとしてある程度の存在を認められるには300記事が1つの目安であるという説があるので[要出典]、 この300回目のエントリは当ブログにとって大きな節目と言える。 前回299号のエントリでは「なぜWikioediaはわかりにくいのか(数学とか)」という内容を書いた。 そこで言いたかったことを3行でまとめると次の通り。 ■ Wikipediaの説明は理工系の初学者にはわかりにくいね。 ■ そもそも説明のアプローチ(思想とも言う)が違うので、わかりにくくて当然だね。 ■ もっとわかりやすい説明の仕方がありそうだね。特に図を使った説明は直観的な理解を助ける力があるね。 まぁ、だいたいこんな感じ。 そして、その記事につ

    Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習
  • 違法素数 - Wikipedia

    違法素数(いほうそすう/英: illegal prime)とは、素数のうち、違法となるような情報やコンピュータプログラムを含む数字。違法数(英語版)の一種である。 2001年、違法素数の1つが発見された。この数はある規則に従って変換すると、DVDのデジタル著作権管理を回避するコンピュータプログラムとして実行可能であり、そのプログラムはアメリカ合衆国のデジタルミレニアム著作権法で違法とされている[1]。 経緯[編集] DVDのコピーガードを破るコンピュータプログラムDeCSSのソースコード 1999年、ヨン・レック・ヨハンセンはDVDのコピーガード (Content Scramble System; CSS)を破るコンピュータプログラム「DeCSS」を発表した。ところが2001年5月30日、アメリカ合衆国の裁判所は、このプログラムの使用を違法としただけではなく、ソースコードの公表も違法である

    mk16
    mk16 2013/07/25
    >素数の内、違法となるような情報やコンピュータプログラムを含む数字。違法数(英語版)の一種。
  • セル・オートマトン - Wikipedia

    この記事には参考文献や外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2022年3月) セル・オートマトンの一種ライフゲームで、ゴスパー(英語版)のグライダー銃がグライダーを放っているところ[1] セル・オートマトン(英: cellular automaton、略称:CA)とは、格子状のセルと単純な規則による、離散的計算モデルである。計算可能性理論、数学、物理学、複雑適応系、数理生物学、微小構造モデリングなどの研究で利用される。非常に単純化されたモデルであるが、生命現象、結晶の成長、乱流といった複雑な自然現象を模した、驚くほどに豊かな結果を与えてくれる。 正確な発音に近いセルラ・オートマトンとも呼ばれることがある。セルは「細胞」「小部屋」、セルラは「細胞状の」、オートマトンは「から

    セル・オートマトン - Wikipedia
    mk16
    mk16 2013/02/22
    >イモガイやガクフボラといった貝の貝殻の模様はセル・オートマトンの描くパターンによく似ている。
  • コルモゴロフ複雑性 - Wikipedia

    コルモゴロフ複雑性(コルモゴロフふくざつせい、英語: Kolmogorov complexity)とは、計算機科学において有限長のデータ列の複雑さを表す指標のひとつで、出力結果がそのデータに一致するプログラムの長さの最小値として定義される。コルモゴロフ複雑度、コルモゴロフ=チャイティン複雑性 (Kolmogorov-Chaitin complexity) とも呼ばれる。 この画像はフラクタル図形であるマンデルブロ集合の一部である。このJPEGファイルのサイズは17KB以上(約140,000ビット)ある。ところが、これと同じファイルは140,000ビットよりも遥かに小さいコンピュータ・プログラムによって作成することが出来る。従って、このJPEGファイルのコルモゴロフ複雑性は140,000よりも遥かに小さい。 コルモゴロフ複雑性の概念は一見すると単純なものであるが、チューリングの停止問題やゲー

    コルモゴロフ複雑性 - Wikipedia
  • 折紙の数学 - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Mathematics of paper folding|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳

  • 数学上の未解決問題 - Wikipedia

    数学上の未解決問題(すうがくじょうのみかいけつもんだい、英: unsolved problems in mathematics)とは、未だ解決されていない数学上の問題のことで、未解決問題の定義を「未だ証明が得られていない命題」という立場を取るのであれば、そういった問題は数学界に果てしなく存在する。ここでは、リーマン予想のようにその証明結果が数学全域と関わりを持つような命題、P≠NP予想のようにその結論が現代科学、技術のあり方に甚大な影響を及ぼす可能性があるような命題、問いかけのシンプルさ故に数多くの数学者や数学愛好家たちが証明を試みてきたような有名な命題を列挙する。 ミレニアム懸賞問題[編集] 以下7つの問題はミレニアム懸賞問題と呼ばれ、クレイ数学研究所によってそれぞれ100万ドルの懸賞金が懸けられている。 P≠NP予想 ホッジ予想 ポアンカレ予想(グリゴリー・ペレルマンによって解決済み)

    数学上の未解決問題 - Wikipedia
  • バナッハ=タルスキーのパラドックス - Wikipedia

    バナッハ=タルスキーのパラドックス: 球を適当に分割して、組み替えることで、元と同じ球を2つ作ることができる。 バナッハ=タルスキーのパラドックス (Banach-Tarski paradox) は、球を3次元空間内で、有限個の部分に分割し、それらを回転・平行移動操作のみを使ってうまく組み替えることで、元の球と同じ半径の球を2つ作ることができるという定理(ただし、各断片は通常の意味で体積を定義できない)。この操作を行うために球を最低5つに分割する必要がある。 バナッハ=タルスキーの証明では、ハウスドルフのパラドックスが援用され、その後、多くの人により証明の最適化、様々な空間への拡張が行われた。 結果が直観に反することから、定理であるが「パラドックス」と呼ばれる。証明の1箇所で選択公理を使うため、選択公理の不合理性を論じる文脈で引用されることがある。ステファン・バナフ(バナッハ)とアルフレト

    バナッハ=タルスキーのパラドックス - Wikipedia
  • マンデルブロ集合 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "マンデルブロ集合" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年3月) マンデルブロ集合 数学、特に複素力学系におけるマンデルブロ集合(マンデルブロしゅうごう、英: Mandelbrot set )は、 充填ジュリア集合に対する指標として提唱された集合である。数学者ブノワ・マンデルブロの名に因む。 定義[編集] 左上:場所 a の拡大図,右上:場所 b の拡大図,左下:場所 c の拡大図,右下:全体図 次の漸化式 で定義される複素数列 {zn}n∈N∪{0} が n → ∞ の極限で無限大に発散しないという条件を満たす複素数

    マンデルブロ集合 - Wikipedia
  • フラクタル - Wikipedia

    この項目では、幾何学の概念について説明しています。テレビアニメについては「フラクタル (テレビアニメ)」を、榊原ゆいのアルバムについては「Fractal」を、日の持株会社については「FRACTALE」をご覧ください。 フラクタルの例(マンデルブロ集合) フラクタル(仏: fractale, 英: fractal)は、フランスの数学者ブノワ・マンデルブロが導入した幾何学の概念である。ラテン語の fractus から。図形の部分と全体が自己相似(再帰)になっているものなどをいう。なお、マンデルブロが導入する以前から以下で述べるような性質を持つ形状などはよく考えられてきたものであり、また、そういった図形の一つである高木曲線は幾何ではなく解析学上の興味によるものである。 定義[編集] コッホ雪片の作成 フラクタルの特徴は直感的には理解できるものの、数学的に厳密に定義するのは非常に難しい。マンデル

    フラクタル - Wikipedia
  • 1