タグ

数学に関するmonchytailのブックマーク (33)

  • CodeIQについてのお知らせ

    2018年4月25日をもちまして、 『CodeIQ』のプログラミング腕試しサービス、年収確約スカウトサービスは、 ITエンジニアのための年収確約スカウトサービス『moffers by CodeIQ』https://moffers.jp/ へ一化いたしました。 これまで多くのITエンジニアの方に『CodeIQ』をご利用いただきまして、 改めて心より深く御礼申し上げます。 また、エンジニアのためのWebマガジン「CodeIQ MAGAZINE」は、 リクナビNEXTジャーナル( https://next.rikunabi.com/journal/ )に一部の記事の移行を予定しております。 今後は『moffers by CodeIQ』にて、 ITエンジニアの皆様のより良い転職をサポートするために、より一層努めてまいりますので、 引き続きご愛顧のほど何卒よろしくお願い申し上げます。 また、Cod

    CodeIQについてのお知らせ
  • 子どもに「相対性理論って何?」と聞かれたときのために概要を分かりやすく簡単に解説してみた - Yukihy Life

    この記事の目的はタイトルの通り、子どもに「相対性理論って何?」と聞かれたときに説明できるために、かなりアバウトに相対性理論を解説したものです。 同時に、相対性理論を「まずは概略的にでも理解したい」という方にも有用な内容になっていると思います。 より理解を深めたい方は、こちらの記事にお進み下さい。 中学校で習う数学の範囲でアインシュタインの相対性理論を分かりやすく解説する 上のリンクの記事は中学で習う数学のみを使って、相対性理論というものを解説しています。使うのは中学の数学のみですが、扱っている現象は難しいですので、まずはこの記事でイメージを作っていただけれるとスムーズに進めると思います。 相対性理論とは? どんな現象が起きるの? 相対性理論の現象 結果1 光の速度よりも速く動けるものはない*2 結果2 光の速度に近い速さで動くものは、縮んで見える 結果3 光の速度に近い速さで動くものは、時

    子どもに「相対性理論って何?」と聞かれたときのために概要を分かりやすく簡単に解説してみた - Yukihy Life
  • Scilab | Scilab

    GET IN TOUCH CONTACT US Email: contact@scilab.org Web: https://www.3ds.com/ Dassault Systèmes 10 Rue Marcel Dassault 78140 Vélizy-Villacoublay - France

  • 平方数かどうかを高速に判定する方法 - hnwの日記

    平方数とは、ある整数の平方(=二乗)であるような整数のことを言います。つまり、0,1,4,9,16,...が平方数ということになります。 ところで、与えられた整数が平方数かどうかを判定するにはどうすれば良いでしょうか。与えられた整数の平方根の小数点以下を切り捨て、それを二乗して元の数になるかどうか、というのがすぐ思いつく実装です。 <?php function is_square($n) { $sqrt = floor(sqrt($n)); return ($sqrt*$sqrt == $n); } しかし、平方根の計算は比較的重い処理です。もっと高速化する方法は無いのでしょうか。 多倍長整数演算ライブラリGNU MPには平方数かどうかを判定するmpz_perfect_square_p関数が存在します(PHPでもgmp_perfect_square関数として利用できます)。稿ではこの実装

    平方数かどうかを高速に判定する方法 - hnwの日記
  • フーリエ変換の本質

    工学系の大学生なら、2回生ぐらいで習うフーリエ変換。フーリエ級数やらフーリエ展開やらの式だけ覚えさせられて、フーリエ変換の意味を理解してない人が多いようです。 そこで、フーリエ変換とは何か?をサクっと説明してみましょう。 全ての信号は、上図のようにsin波の足しあわせで表現することが出来ます。 具体的には、周波数が1のsinxと周波数が2のsin2xと周波数が3のsin3xと・・・周波数がnのsinnxを足し合わせることで、あらゆる信号を表現することが出来るのです。 しかし、ただ単にy=sinx+sin2x+sin3x+・・・としたのでは1種類の信号しか表現できません。そこで、各周波数の振幅を変化させることで、あらゆる信号を表現するのです。 上記の信号の場合、y=4*sinx+0.5*sin2x+2*sin3x+sin4xと表現できます。 さて、先程の図を用いて、周波数を横軸に、振幅の大き

  • インド式計算法便利過ぎワロタwwwww : キニ速

  • 計算の裏技(速算術)@受験の月

    速算術について 願望 わずかな工夫で計算式を見る目が変わる強力な計算技巧があるにもかかわらず、何故学校で教わらないのか。まだ基計算能力が固まっていない小学生低学年には早いかもしれないが、中学生以上の日人には常識であって欲しい。 意義 数学の試験では最終的には計算スピードがものを言う。速算術は計算そのものの時間を短縮する以上に、筆算を書く必要がなくなることによる時間短縮効果が大きい。複雑な計算を避け、計算回数を減らすことで、計算ミスの減少にも貢献する。受験で役立つのはもちろん、実生活でも役立つ。 訓練 速算術は単に方法を知っているだけでは実戦で使えない。気に入ったものを普段から意識して使うようにして、少しずつ使えるものを増やしていく。慣れてきたら、複数の技巧を組み合わせて使うこともできるようになる。 原理 原理はほとんど省略した。特に掛け算の速算の原理は展開・因数分解が背景にあるので、中

  • 結城浩『数学文章作法 基礎編』 - 文章を書くときに大切な「たったひとつのこと」 #book - CodeIQ Blog

    CodeIQの中の人、hnanami です。 今回は、『数学ガール』の著者であり、CodeIQではアルゴリズム系問題で毎回多くの挑戦者が集まる出題者である結城 浩さんから寄稿いただきました。 ご紹介いただく『数学文章作法 基礎編』を抽選でもらえる特典が付いた問題も挑戦受付中です。この機会をお見逃しなく! =============================== こんにちは、結城浩です。 結城はふだん『数学ガール』シリーズなどの数学読み物やプログラミングのを書いており、CodeIQではアルゴリズム系の問題を出題しています。みなさんいつも挑戦ありがとうございます。 さて今日はCodeIQ運営さんのご厚意により、結城がこの4月に出版した『数学文章作法 基礎編』というをご紹介したいと思います(「作法」は「さほう」ではなく「さくほう」です)。 書は「正確で読みやすい文章を書く心がけ」を書

    結城浩『数学文章作法 基礎編』 - 文章を書くときに大切な「たったひとつのこと」 #book - CodeIQ Blog
  • http://mates-sch.com/archives/2784/

  • http://yuma-z.com/blog/2013/03/study/

  • 円周率と素数と自然数の素晴らしき関係 | ぴよひこむ

    円周率はπである。3.14159265… 素敵な数だ。 ちなみに上の文章は3.14159265…の文字数で書かれている。 素敵だ。 円周率1000000桁表 素数とは、「1」とその数以外に正の約数を持たない「1」でない数のことである。 素数って素敵。唯一無二だ。 この前なんか、素数のを買ってしまった。 そのぐらいのオーラが素数にはあるのだ。 素数表150000個 円周率と素数と自然数には素晴らしい式が存在する。 円周率と自然数 円周率と素数 数学は不思議だ。 この式を見つけたオイラーは何を思ったのだろうか。 両方共同じ数だと思えないが、イコールでつながる。 総和を表す「Σ」(シグマ)、かけあわせた積を表す「Π」(パイ)を使うと簡単に示すことができる。 これはオイラー積と呼ばれるものだ。 こちらの詳細は 素数の積と円周率・ゼータ関数 朝日新聞グローブ (GLOBE)|数学という

  • 海城学園 数学科

    海城の教育数学数学学習における意欲の源 数学が得意な生徒にとっても、難しくてなかなか解けない問題は存在します。そういった難しい問題に出会ったとき、興味をもって粘り強く考えていけるような、いわば“意欲の源”を育むことが大切であると私どもは考えます。ときに、意欲の落ちた生徒から、「数学をなぜ学ぶのですか?」という問いかけを耳にすることがあります。これに対し、各担当者が明確に自己の意見と信念を述べつつ、お互いに考えた上で、質問者が納得し、意欲を再び取り戻せることを指導の目標の一つとしております。 数学学習の原動力 また、数学はその存在自体に価値があり、美しいものでもあります。言うなれば、数学の“崇高なる美”を感じる心を中学・高校において育みたい、そして、もっと知りたい、探ってみたいという探求の心が、数学学習における原動力となるように願ってやみません。 読み・書き・計算,そして論証する力 さ

  • 高校生にお勧めする30冊の物理学、数学書籍 - とね日記

    理数系ネタ、パソコン、フランス語の話が中心。 量子テレポーテーションや超弦理論の理解を目指して勉強を続けています! 「200冊の理数系書籍を読んで得られたこと」という記事に対し、高校生の読者の方から「高校生向きのも選んでほしい。」という要望があったので、取り急ぎピックアップして紹介することにした。当初10冊のつもりだったが、あっという間に30冊になってしまったのでそのまま紹介する。 高校までの授業内容にとらわれず、意欲的な高校生のために読んでワクワクできるという基準で選んでいる。値段の高いについては、図書館を利用するか、ご両親に頼んでアマゾンから格安の中古をお買い求めになるとよいだろう。 なお高校までは学校の教科書や授業が基になるので、これをおろそかにしてはならないことを強調しておく。特に受験生はこの時期、この手のは禁物だ。入試が終わるまで我慢してほしい。 ----------

    高校生にお勧めする30冊の物理学、数学書籍 - とね日記
  • 数学解釈のための方言講座ー数学特有の、慣れないと不思議な言い回しを解説する 読書猿Classic: between / beyond readers

    以前「教科書は教えてくれないけれど知らないと教科書が読めない学習語リスト」という記事を書いた。 教科書は教えてくれないけれど知らないと教科書が読めない学習語リスト 読書猿Classic: between / beyond readers 専門用語は、教科書の中で説明してあるし、専門辞書を引くこともできる。 けれども、教科書や専門辞書の説明の中には、特に説明なく使われる言葉がある。 前の記事では、これを〈学習語〉と呼んだ。 〈学習語〉は、(とくに子どもたちが交わす)日常の話し言葉には登場しにくい抽象語などが含まれている。 教科書や専門辞書の説明は、そうした〈学習語〉を知っていることが前提になっている。 知っていないと、日々の学習でつまずき、後れを取ることになってしまう。 今回取り上げるのは、〈学習語〉と似ているが、もう少しやっかいな言葉たちである。 〈学習語〉は、そうはいっても一般語であって

    数学解釈のための方言講座ー数学特有の、慣れないと不思議な言い回しを解説する 読書猿Classic: between / beyond readers
  • 無料で自宅でやりなおす→小学校の算数・数学 | 学校・教育算数から大学数学までweb上教材をリストにした 読書猿Classic: between / beyond readers

    先日の記事 誰もがどこかでつまずいた→小学校の算数から大学数学まで126の難所を16種類に分類した 読書猿Classic: between / beyond readers を読んだ人から「やりなおし魂に火をつけるだけつけて放置するのは無責任だ、何をやればいいのか教えろ」という問い合わせがあった。 小学校の算数レベルから微積分など高校+αまで、ついている予備テストをやれば、どの章は飛ばしていいか、どこの章のどの問題を勉強すればよいかを教えてくれる往年の名著(が復刻してた) を紹介しようと思ったが(科学を志さない人にも勧められる)、買い損なった場合と人のために、web上の教材をリストにして、先の記事の補いとする。 (2017.9.6 リンク切れ等、訂正しました) 小学校〜高校 小学校の算数 中学校の数学 高校数学 大学数学基礎 小学校〜高校 小学校「算数科」,中学校・高等学校「数学科」の内容

    無料で自宅でやりなおす→小学校の算数・数学 | 学校・教育算数から大学数学までweb上教材をリストにした 読書猿Classic: between / beyond readers
  • 誰もがどこかでつまずいた→小学校の算数から大学数学まで126の難所を16種類に分類した

    数学嫌いはどこから生まれてくるのか? よく聞かれる「役に立たないから」なる理由は、実のところ良くて後付け悪くて言い訳であって、その実態は、算数や数学につまずいて分からなくなった人たちが、イソップ寓話のキツネよろしく「あのブドウ(数学)は酸っぱい(役に立たない)」と言い広めているのである。 ならば撃つべきは〈算数・数学のつまずき〉である。 以下に示すのは、小学校の算数から大学基礎レベルの数学まで、「つまずいて分からなくなる」箇所を集めて16のカテゴリーに分類したものである。 一度もつまずかず専門レベルまで一気に駆け上がることのできた一握りの天才を除けば、数学が得意な人も不得意な人もみなどこかでつまずいたであろう、さまざまな算数・数学の難所が挙げられている。 この分類が示そうとしていることのひとつは、同じ〈根っこ〉をもったつまずきが、小・中・高・大の各レベルで繰り返し出現することである。 たと

    誰もがどこかでつまずいた→小学校の算数から大学数学まで126の難所を16種類に分類した
  • 100の職業でどんな数学を使うのか1枚の表にまとめてみた

    前回の記事で「誰が、どんな数学を、どのように使っているか」の表がクリックしても大きくならない、見えない、見たい、なんとかしろ、という話があったので、それを。 Hal Saundersの書物When Are We Ever Gonna Have to Use This?にある 「100の職業人に聞きました、あなたが仕事で使う数学はどんなん?」をまとめた表をそのままスキャンして貼り付けるのもどうかと思ったので、これを元に、より多くの数学のスキル/知識を使う職業から順にソートして並べてみた。 Saundersは、職業人に使われている数学を60のトピックにまとめているが、これについても、より多くの職業で使われるものから順に並べた。 (クリックで拡大) 元のデータをgoogle spreadsheetにアップロードしました(2017.12.31) 元々このは、教科書に頻出するあまりに非現実的な応用

    100の職業でどんな数学を使うのか1枚の表にまとめてみた
  • 数学速成コース

    数学速成コース 目次 コースガイダンス 第1回:集合と論理1 第2回:線形代数1 第3回:微分積分1 第4回:線形代数2 第5回:微分積分2 第6回:確率統計1 第7回:線形代数3 第8回:微分積分3 第9回:確率統計2 第10回:集合と論理2 第11回:線形代数4 第12回:微分積分4 第13回:確率統計3 付録 Copyright (C) 2008-2009 the CompView project of Tokyo Institute of Technology (Global COE program)

  • 凡人が数学を語学として学ぶ具体的な手続きを説明する/図書館となら、できること番外編

    少女:数学はどうやって勉強してるの? 少年:得意じゃないから、語学とほとんど同じ。というか第二言語のつもりでやってる(Mathematics as a Second Language)。 ・読書猿Classic 数学にはネイティブはいない:「語学としての数学」完全攻略=風景+写経アプローチ 少女:まえに、200ページくらいのテキストを用意して、目次を見て、全体をざっと見て…といってた、あれ? ・図書館となら、できること番外編/マイナー言語のBookishな学び方 読書猿Classic: between / beyond readers テキストは〈分かる〉系より〈解ける〉系 少年:そう。最初はなるべくコンパクトなを使う。一冊で分からないところが他のを見ると分かることがあるから、手に入るだけは確保するのも…… 少女:語学のときと同じ? 少年:うん。ただマイナー言語とは違って数学関係の書籍

    凡人が数学を語学として学ぶ具体的な手続きを説明する/図書館となら、できること番外編
  • 東大医学部現役合格生の開発した「ゴースト暗算」がものすごい

    キヨタ @kiyota888 @DannaNanda ゴースト暗算すごくいいですね! これでインド人(小学生)に勝つる! 思わずフォローさせていただきました。

    東大医学部現役合格生の開発した「ゴースト暗算」がものすごい