この記事についてこの記事ではGPT-3[1]の解説をします。内容のサマリは以下の通りです。 GPT-3の前身であるGPT-2では、巨大なデータセット+巨大なネットワークで言語モデルを構築し、各タスクで学習させなくても良い結果が得られた。GPT-3では、さらに巨大なデータセット+さらに巨大なネットワークで言語モデルを構築し、数十のサンプルを見せると凄く良い結果が得られた一方、様々なタスクに言語モデルのスケールアップのみで対応することへの限界が見えてきた。人種、性別、宗教などへの偏見の問題や、悪用に対する課題もある。この記事の流れは以下の通りです。 Transformer, GPT-2の説明GPT-3のコンセプトと技術的な解説GPT-3ので上手くいくタスクGPT-3で上手くいかないタスク偏見や悪用への見解 Transformerまず、GPT-3の前身となったGPT-2に入る前に、その中に使われ