タグ

ブックマーク / logics-of-blue.com (3)

  • 主成分分析の考え方 | Logics of Blue

    最終更新:2017年7月20日 主成分分析は、多種類のデータを要約するための強力なツールです。 この記事では、主成分分析の考え方・計算の方法、そしてR言語を用いた実装方法について説明します。 まずは、主成分分析とは何者で、計算結果をどのように解釈したらよいのかを学んでください。 そのうえで、ggplot2を使った美麗なグラフの作り方についても合わせて覚えていただければと思います。 コードはまとめてこちらに置いてあります。 スポンサードリンク 目次 主成分分析の考え方 主成分分析とは何をするものか 主成分分析ができると何が嬉しいか 主成分分析の結果はどのように解釈すればよいか 寄与率 主成分得点 Rによる主成分分析 主成分の計算方法 アヤメデータの分析例 1.主成分分析の考え方 主成分分析とは何をするものか 主成分分析とは何をするものでしょうか。 一言でいうと、下の図のように「散布図にそれっ

  • 機械学習による時系列予測 | Logics of Blue

    最終更新:2017年7月26日 機械学習法を用いた時系列データの予測方法について説明します。 R言語を使えば、機械学習も時系列データのデータ操作も簡単にできます。 両者を組み合わせて、時系列データへの予測モデルを作成してみました。 ソースコードはこちらに置いてあります。 スポンサードリンク 目次 解析の準備 機械学習とは 今回予測するデータ caretパッケージを使う準備 Rによる機械学習 予測モデルの概要 ハイパーパラメタのチューニング 機械学習による時系列予測 最適な次数を選ぶ 当てはめ精度の評価 将来の予測 1.解析の準備 機械学習とは 機械学習とは、次にどのようなデータが来るのかを、決まった手順を踏んで予測する技術、あるいは手法のことです。 機械学習の良いところは、予測のための「手順」を、過去のデータからほとんど自動で見つけられることです。 昔は人間が勘と経験そして度胸で予測を出し

    機械学習による時系列予測 | Logics of Blue
  • Pythonによる状態空間モデル | Logics of Blue

    最終更新:2017年06月06日 Pythonを用いた、状態空間モデルの実装方法について説明します。 なお、正規線形状態空間モデル(動的線形モデル)のみをここでは扱います。 Pythonを使えば、カルマンフィルタや最尤法によるパラメタ推定を短いコードで簡潔に実装することができます。 なお、この記事ではOSはWindowsPythonは『Python 3.6.0 :: Anaconda custom (64-bit)』を使用して、JupyterNotebook上で計算を実行しました。 JupyterNotebookの出力はリンク先を参照してください。 目次 状態空間モデルとPython時系列分析 データの読み込み ローカルレベルモデルの推定 ローカル線形トレンドモデルの推定 季節変動の取り込み 推定するパラメタの数を減らす モデルの比較と将来予測 1.状態空間モデルとPython時系列分析

  • 1