タグ

algorithmとsearchに関するnabinnoのブックマーク (3)

  • 最近傍探索 - Wikipedia

    最近傍探索(英: Nearest neighbor search, NNS)は、距離空間における最も近い点を探す最適化問題の一種、あるいはその解法。近接探索(英: proximity search)、類似探索(英: similarity search)、最近点探索(英: closest point search)などとも呼ぶ。問題はすなわち、距離空間 M における点の集合 S があり、クエリ点 q ∈ M があるとき、S の中で q に最も近い点を探す、という問題である。多くの場合、M には d次元のユークリッド空間が採用され、距離はユークリッド距離かマンハッタン距離で測定される。低次元の場合と高次元の場合で異なるアルゴリズムがとられる。 ドナルド・クヌースは、The Art of Computer Programming Vol.3(1973年)で、これを郵便局の問題で表した。これはすな

  • 最短経路問題 - Wikipedia

    グラフ理論における最短経路問題(さいたんけいろもんだい、英: shortest path problem)とは、重み付きグラフの与えられた2つのノード間を結ぶ経路の中で、重みが最小の経路を求める最適化問題である。 2頂点対最短経路問題 特定の2つのノード間の最短経路問題。一般的に単一始点最短経路問題のアルゴリズムを使用する。 単一始点最短経路問題 (SSSP:Single Source Shortest Path) 特定の1つのノードから他の全ノードとの間の最短経路問題。この問題を解くアルゴリズムとしては、ダイクストラ法やベルマン-フォード法がよく知られている。 全点対最短経路問題 (APSP : All Pair Shortest Path) グラフ内のあらゆる2ノードの組み合わせについての最短経路問題。この問題を解くアルゴリズムとしては、ワーシャル-フロイド法が知られている。 このよう

  • ダイクストラ法 - Wikipedia

    ダイクストラ法の動作のアニメーション ダイクストラ法(だいくすとらほう、英: Dijkstra's algorithm)はグラフ理論における辺の重みが非負数の場合の単一始点最短経路問題を解くための最良優先探索によるアルゴリズムである。 ダイクストラ法は、1959年エドガー・ダイクストラによって考案された。応用範囲は広くOSPFなどのインターネットルーティングプロトコルや、カーナビの経路探索や鉄道の経路案内においても利用されている。 ほかのアルゴリズムとして、 最短経路長の推定値を事前に知っているときは、ダイクストラ法の改良版であるA*アルゴリズムを用いて、より効率的に最短経路を求めることができる。 辺の重みが全て同一の非負数の場合は幅優先探索がより速く、線形時間で最短路を計算可能である。 無向グラフで辺の重みが正整数の場合は、Thorupのアルゴリズムによって線形時間での計算が可能であるが

    ダイクストラ法 - Wikipedia
  • 1