対象とする人 ディープラーニングすごい! ←聞き飽きた チュートリアルあるよ! ←ふわっとしすぎて具体的なところが分からん こういう論文あるよ! ←読めるわけないだろ そういう人向け。(たぶん学部四年程度向け) ニューラルネット初学者が、書ききるまで怪しいところ満載でも突っ走ります。 ニューラルネット(この記事) →(AutoEncoder) →(DenoisingAutoEncoder) →ホップフィールドネットワーク →ボルツマンマシン →Restrictedボルツマンマシン →(Gaussian Binary - Restricted Boltzmann Machines) →(DeepBeliefNetwork) →(DeepNeuralNetworks) →畳み込みニューラルネット(後日) までやる。 太線以外は読み飛ばしてOK 本文中では怖い式は使わない。(Appendixに書
岡野原です。Deep Learningが各分野のコンペティションで優勝し話題になっています。Deep Learningは7、8段と深いニューラルネットを使う学習手法です。すでに、画像認識、音声認識、最も最近では化合物の活性予測で優勝したり、既存データ・セットでの最高精度を達成しています。以下に幾つか例をあげます。 画像認識 LSVRC 2012 [html] 優勝チームスライド [pdf], まとめスライド[pdf] Googleによる巨大なNeuralNetを利用した画像認識(猫認識として有名)[paper][slide][日本語解説] また、各分野のトップカンファレンスでDeep Learningのチュートリアルが行われ、サーベイ論文もいくつか出ました。おそらく来年以降こうした話が増えてくることが考えられます。 ICML 2012 [pdf] ACL 2012 [pdf] CVPR
ニューラルネットワーク入門 Copyright(c)1996 Akira Iwata & Toshiyuki Matubara (Iwata Laboratory Nagoya Institute of Technolgy) 0 はじめに 学習の進め方 1 神経細胞とニューラルネットワーク 神経細胞 ニューロンモデル ニューロンモデルの数式化 ネットワークモデル まとめ 2 階層型ネットワーク 2.1 パーセプトロン パーセプトロン パーセプトロンの動作と学習 パーセプトロン学習のシミュレーション パーセプトロンの限界 まとめ 2.2 バックプロパゲーション学習 最急降下法 前向き演算 後向き演算1(出力層から中間層) 後向き演算2(中間層から入力層) BPのシミュレーション BPシミュレータ まとめ 2.3 その他の階層型ネットワーク ネオ
人工知能の分野におけるニューラルネットワーク(英: neural network; NN、神経網)は、生物の学習メカニズムを模倣した機械学習手法として広く知られているものであり[1]、「ニューロン」と呼ばれる計算ユニットをもち、生物の神経系のメカニズムを模倣しているものである[1]。人間の脳の神経網を模した数理モデル[2]。模倣対象となった生物のニューラルネットワーク(神経網)とはっきり区別する場合は、人工ニューラルネットワーク (英: artificial neural network) と呼ばれる。 以下では説明の都合上[注釈 1]、人工的なニューラルネットワークのほうは「人工ニューラルネットワーク」あるいは単に「ニューラルネットワーク」と呼び、生物のそれは「生物のニューラルネットワーク」あるいは「生物の神経網」、ヒトの頭脳のそれは「ヒトのニューラルネットワーク」あるいは「ヒトの神経網
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く