TechCrunch Daily News Every weekday and Sunday, you can get the best of TechCrunch’s coverage. Startups Weekly Startups are the core of TechCrunch, so get our best coverage delivered weekly.

推薦システムのトップ会議 RecSys2016 が9月15日から19日までアメリカのボストンで開催され、ワークショップ発表者&学生ボランティアとして参加してきた。これまで学会発表はひとりで行くことが多く、今回も例外ではなかったが、ボランティアのおかげで他の学生との交流や伝説的な研究者との接触が多くてとても楽しめた。みんなもやると良いと思う。 RecSys2016@Boston RecSysは今回で10回目を迎えた推薦システムのトップ会議で、本会議の採択率はショートペーパーでも20%という狭き門。僕はワークショップのひとつ Profiling User Preferences for Dynamic Online and Real-Time Recommendations(長い)で、ECサイトとかでよく見られる persistent cold-start という問題と、それに絡めて Fact
こんにちは、Gunosyデータ分析部に所属している森本です。 主な担当業務は記事配信アルゴリズムの改善、ログ基盤運用です。 最近良く聞く音楽はOne Direction - Live While We're Youngです。 本記事では、Sparkで利用できるDeep Learningフレームワークをまとめました。 GunosyではChainerで畳み込みニューラルネットワークを応用し、ユーザーのデモグラフィック推定を行っています。 WebDB Forum 2016 gunosy from Hiroaki Kudo Chainer以外にも多数のDeep LearningフレームワークがPythonを中心に数多く存在します。 TensorFlow, Keras, Caffe, Theanoなどなど。どのフレームワークが優れているかという回答は状況に応じて変わりますが、Pythonを使用する大
Advances in deep reinforcement learning have allowed autonomous agents to perform well on Atari games, often outperforming humans, using only raw pixels to make their decisions. However, most of these games take place in 2D environments that are fully observable to the agent. In this paper, we present the first architecture to tackle 3D environments in first-person shooter games, that involve part
The stochastic gradient descent (SGD) method and its variants are algorithms of choice for many Deep Learning tasks. These methods operate in a small-batch regime wherein a fraction of the training data, say $32$-$512$ data points, is sampled to compute an approximation to the gradient. It has been observed in practice that when using a larger batch there is a degradation in the quality of the mod
Artificial neural networks are most commonly trained with the back-propagation algorithm, where the gradient for learning is provided by back-propagating the error, layer by layer, from the output layer to the hidden layers. A recently discovered method called feedback-alignment shows that the weights used for propagating the error backward don't have to be symmetric with the weights used for prop
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? これなあに? 先週は強化学習の勉強会をしました。 今週は音声処理の勉強会をやるぞということになって僕はまた焦って資料をかき集めました。 この記事は音声処理の勉強会を行うにあたって、参考になったサイト、もしくは情報をまとめたものです。 勉強会で共有するために作ったけどせっかくだしあげておくことにしました。 読んだ感想や要点なんかも簡単にまとめれたらと思います。 特に参考になった記事、重要だと思った記事には★マークをつけておきます。 僕自身が音声処理初心者ということ、短い時間でまとめたことから誤りや不適切な点があるかもしれません。 その場合
はじめまして。データ分析部の大原です。最近家での作業中は、「雨 強め」などの自然音を聞いています。歌詞も無いので音楽に惑わされることなくリラックスして作業できるので良い感じです。 さて、少し前の事になりますが、8月28日(日)〜8月30日(火)にNLP若手の会 (YANS)に参加しました! YANSとは YANSとはYoung Researcher Association for NLP Studiesの頭文字を取ったもので、自然言語処理関連の若手研究者・若手技術者のアクティビティを高めることを目的としたコミュニティで、2006年から毎年この時期に開催されています。 NLP関連の研究をしている多くの大学から、または業務でNLP関連の技術を活用している企業の方が多く集まり、互いに自分の研究の紹介・意見の交換などをでき、有意義な時間を過ごせます。 今年の開催地は、和歌山県白浜で、海沿いで非常に
ディープラーニングの本格的な入門書。外部のライブラリに頼らずに、Python 3によってゼロからディープラーニングを作ることで、ディープラーニングの原理を楽しく学びます。ディープラーニングやニューラルネットワークの基礎だけでなく、誤差逆伝播法や畳み込みニューラルネットワークなども実装レベルで理解できます。ハイパーパラメータの決め方や重みの初期値といった実践的なテクニック、Batch NormalizationやDropout、Adamといった最近のトレンド、自動運転や画像生成、強化学習などの応用例、さらには、なぜディープラーニングは優れているのか? なぜ層を深くすると認識精度がよくなるのか? といった“Why”に関する問題も取り上げます。 関連ファイル サンプルコード 正誤表 ここで紹介する正誤表には、書籍発行後に気づいた誤植や更新された情報を掲載しています。以下のリストに記載の年月は、正
Paper at http://arxiv.org/abs/1608.04062 Incredible claims: Train only using about 10% of imagenet-12, i.e. around 120k images (i.e. they use 6k images per arm) get to the same or better accuracy as the equivalent VGG net Training is not via backprop but more simpler PCA + Sparsity regime (see section 4.1), shouldn't take more than 10 hours just on CPU probably (I think, from what they described,
NEWS2022.12.26 ヤングライオンズ/スパイクスコンペティション国内選考のデジタル部門とデザイン部門において、当社社員がSILVERを受賞 〜デジタル部門の受賞者はヤングスパイクス本戦に出場 〜 NEWS2022.11.24 無料ウェビナー「コンテンツを制するものがセールスを制す! BtoB営業組織でリードと商談を作り出すコンテンツマーケティング」を12月6日(火) に開催 PRESS RELEASE2022.11.18 学生から応募された年賀はがきのデザインで同世代の子どもを支援 「チャリティー年賀状 全国学生デザインコンテスト 2023」入選発表・販売開始 〜 売上枚数に応じた支援金を(公社)チャンス・フォー・チルドレンへ寄附 〜
こんちくわ,Gunosyデータ分析部の@hmjです. 最近よく聞く音楽はGOING UNDER GROUND の さえないブルー です. 今回は,先日開催したデータ分析部ロジック共有会という社内向けの勉強会についてご紹介します. 1. データ分析部ロジック共有会とは データ分析部では,Gunosyの記事配信のロジックを改善したり,KPIをみてデータ分析などを主に行っています. 業務内容や組織体制などは,下記をご覧ください. seleck.cc あなただけにそっと教える弊社の分析事情 #data analyst meetup tokyo vol.1 LT from Hiroaki Kudo www.slideshare.net データ分析部ロジック共有会とは,そんな私たちデータ分析部で日々行っているロジック改善で,どういったことをしているかなどを 社内の人たちに知ってもらうための勉強会です.
Hamid Palangi Principal Researcher at Microsoft Research, Affiliate Associate Professor at the University of Washington Two weeks ago I attended the deep learning summer school at Montreal organized by Yoshua Bengio and Aaron Courville. Below is a summary of what I learned. It starts from basic concepts and continues with more advanced topics. 1. Essence of regularization Two popular regularizatio
飞桨致力于让深度学习技术的创新与应用更简单。具有以下特点:同时支持动态图和静态图,兼顾灵活性和效率;精选应用效果最佳算法模型并提供官方支持;真正源于产业实践,提供业界最强的超大规模并行深度学习能力;推理引擎一体化设计,提供训练到多端推理的无缝对接;唯一提供系统化技术服务与支持的深度学习平台
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く