タグ

deep-learningとsoftmax-functionに関するnabinnoのブックマーク (2)

  • ソフトマックス関数 - Wikipedia

    ソフトマックス関数(ソフトマックスかんすう、英: softmax function)や正規化指数関数(せいきかしすうかんすう、英: normalized exponential function)[1]は、シグモイド関数を多次元に拡張した関数。多クラス分類問題において、ニューラルネットワークの出力を確率分布に変換することができるので、最後の活性化関数としてよく用いられる。 ソフトマックス関数という呼び名は人工知能の分野での呼び方であり、関数自体は1868年にルートヴィッヒ・ボルツマンが発表した[2]統計力学のボルツマン分布に由来する。交差エントロピーとの組合せでよく用いられるが、ボルツマン分布とエントロピーの組合せの考え方も統計力学由来である。ボルツマンマシンでも用いられているが、1989年にJohn S. Bridleがsoftmaxと命名した[3][4]。 ソフトマックス関数は、K 個

  • Softmax function - Wikipedia

    The softmax function, also known as softargmax[1]: 184  or normalized exponential function,[2]: 198  converts a tuple of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression. The softmax function is often used as the last activation function of a neural network t

    Softmax function - Wikipedia
  • 1