Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article?
How to read: Character level deep learning UPDATE 30/03/2017: The repository code has been updated to tf 1.0 and keras 2.0! The repository will not be maintained any more. 2016, the year of the chat bots. Chat bots seem to be extremely popular these days, every other tech company is announcing some form of intelligent language interface. The truth is that language is everywhere, it’s the way we co
「はじめに」より抜粋 ディープラーニングによって人工知能の実現に大きな一歩を踏み出したのは間違いない。一方で、ディープラーニングはまだまだ難解な分野であり、なかなか個人での学習が進めづらい分野だと思われているのが現実である。そこで本書では、ディープラーニングの理論と実装をきちんと習得するために、基礎となる機械学習のアルゴリズムをはじめ、ディープラーニングの理解に必要な数式や理論について図を交えながら一から学んでいく。…中略… 実装についても、簡潔でわかりやすいコードで書いているので、Javaの経験が浅くても問題ない。その場合、本書がJavaとディープラーニング双方の学びに役立てば幸いである。 著者プロフィール ◎ 巣籠悠輔(すごもり ゆうすけ) Gunosy、READYFORの創業メンバーとして、エンジニアリング、デザインを担当。大学院修了後は電通にてデジタルクリエイティブの企画・制作、デ
2018年4月25日をもちまして、 『CodeIQ』のプログラミング腕試しサービス、年収確約スカウトサービスは、 ITエンジニアのための年収確約スカウトサービス『moffers by CodeIQ』https://moffers.jp/ へ一本化いたしました。 これまで多くのITエンジニアの方に『CodeIQ』をご利用いただきまして、 改めて心より深く御礼申し上げます。 また、エンジニアのためのWebマガジン「CodeIQ MAGAZINE」は、 リクナビNEXTジャーナル( https://next.rikunabi.com/journal/ )に一部の記事の移行を予定しております。 今後は『moffers by CodeIQ』にて、 ITエンジニアの皆様のより良い転職をサポートするために、より一層努めてまいりますので、 引き続きご愛顧のほど何卒よろしくお願い申し上げます。 また、Cod
In today’s blog post, we are going to implement our first Convolutional Neural Network (CNN) — LeNet — using Python and the Keras deep learning package. The LeNet architecture was first introduced by LeCun et al. in their 1998 paper, Gradient-Based Learning Applied to Document Recognition. As the name of the paper suggests, the authors’ implementation of LeNet was used primarily for OCR and charac
OverviewThis blog post is structured in the following way. First, I will explain what makes a GPU fast. I will discuss CPUs vs GPUs, Tensor Cores, memory bandwidth, and the memory hierarchy of GPUs and how these relate to deep learning performance. These explanations might help you get a more intuitive sense of what to look for in a GPU. I discuss the unique features of the new NVIDIA RTX 40 Amper
The purpose of this blog post is to demonstrate how to install the Keras library for deep learning. The installation procedure will show how to install Keras: With GPU support, so you can leverage your GPU, CUDA Toolkit, cuDNN, etc., for faster network training. Without GPU support, so even if you do not have a GPU for training neural networks, you’ll still be able to follow along. Let me start by
Abstract Real-time simulation of fluid and smoke is a long standing problem in computer graphics, where state-of-the-art approaches require large compute resources, making real-time applications often impractical. In this work, we propose a data-driven approach that leverages the approximation power of deep-learning methods with the precision of standard fluid solvers to obtain both fast and highl
現在、機械学習や深層学習に関する本が非常にたくさん出ている。 どうせ出ているのなら、世界で一番良さそうな教科書的な本はないものかちょっと考えてみた。 今、世界の有名大学が、これらの授業を公開していて、誰でも好きなだけ勉強できる状況にある。 人工知能系の講義ビデオなどについては、別の機会に紹介する。 そんな情報の渦中をさまよっていたら、MIT Press の Deep Learning の本のサイトが見つかった。著者は、Ian Goodfellow(モントリオール大->Google->OpenAI), Yoshua Bengio(モントリオール大) and Aaron Courville(モントリオール大)ということで、この分野ではモントリオール大、トロント大などカナダが有力である。 この本のサイト、とてもショボイ感じなのだけれど、MIT Press がそんないい加減な本を出すとも思えないと
Kaiming He 何恺明 Research Scientist Facebook AI Research (FAIR), Menlo Park, CA I am a Research Scientist at Facebook AI Research (FAIR) as of 2016. Before that I was with Microsoft Research Asia (MSRA), which I joined in 2011 after receiving my PhD. My research interests are in computer vision and deep learning. I am a recipient of the PAMI Young Researcher Award in 2018, the Best Paper Award in CV
最近得居さんに雑なあだ名を付けられて、凹んでる舛岡です。 7/2(土)にChainer Meetup #03をドワンゴ様セミナールームで行いました! 今回も、アカデミックや企業で活躍されている方々にお話しして頂きました。 ドワンゴ様には前回に引き続き今回も会場をお借りしました。またニコ生の放送もお手伝い頂きました。この場を借りてお礼を申し上げます。 Chainer Meetupでの資料 Chainer, CuPy入門 @unnonounoさん [slideshare id=63664668&doc=20160702chainerintro-160702085422] Chainer Update v1.8.0 -> v1.10.0+ @beam2dさん [slideshare id=63661464&doc=20160702-chainer-update-160702050549] シンパ
Deep Learning, Tools and Methods workshop Martigny, Switzerland · July 2016 · 12 Talks The objective of this workshop is to present the current available software and hardware solutions for deep machine learning. We will focus on the two main industrial frameworks for the task: Facebook's Torch and Google's TensorFlow, and will discuss the general principles of deep learning, best practices, "un
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く