タグ

differential-equationに関するnabinnoのブックマーク (3)

  • 微分方程式 - Wikipedia

    一変数関数の導関数の関係式で書かれる常微分方程式と多変数関数の偏導関数を含む関係式で書かれる偏微分方程式に分かれる[1]。 常微分方程式とは例えば、 や、 のような方程式である。 また、偏微分方程式は、 や、 のような格好をした方程式である。 代数的微分方程式[編集] 未知関数とその導関数の関係式が、未知関数や導関数を変数と見たときに解析関数を係数とする多項式である場合、代数的微分方程式と呼ばれる。 線形微分方程式[編集] 方程式が未知関数の一次式として書けるような方程式を線形微分方程式と呼ぶ。また、線型でない微分方程式は非線形微分方程式[注釈 3]と呼ばれる。 例えば、g(x) を f(x) を含まない既知の関数とすれば、 は線型微分方程式であり、 は非線型微分方程式である。線型と呼ばれる理由は後述する線型斉次な方程式について、解の線型結合がその方程式の一般解をなすためである。 未知関数

    微分方程式 - Wikipedia
  • 偏微分方程式 - Wikipedia

    偏微分方程式(へんびぶんほうていしき、英: partial differential equation, PDE)は、未知関数の偏導関数を含む微分方程式である。 概要[編集] 微分方程式は通常多くの解をもち、しばしば解集合を制限する境界条件を付加して考える。常微分方程式の場合にはそれぞれの解がいくつかのパラメータの値によって特徴付けられるような族を解としてもっているが、偏微分方程式については、パラメータは関数値をとると考えるほうが有用である。このことは、過剰決定的な方程式系でない限りは概ね正しいといえる。 偏微分方程式は、自然科学の分野で流体や重力場、電磁場といった場に関する自然現象を記述するモデルとして現れる。これらの場というものは例えば、フライトシミュレーションやコンピュータグラフィックス、あるいは天気予報などを扱うために重要な役割を果たす道具である。また、一般相対性理論や量子力学の基

    偏微分方程式 - Wikipedia
  • 重調和方程式 - Wikipedia

    数学における重調和方程式(英: biharmonic equation)とは、次のように書かれる 4 階の偏微分方程式である: ここで ∇4 は 4 階の偏微分作用素、またはラプラス作用素 Δ の自乗で、重調和作用素 (biharmonic operator) として知られている。 例えば、3次元デカルト座標系では重調和方程式は次の形になる。 重調和方程式の解は重調和関数 (biharmonic function) と呼ばれる。どんな調和関数も重調和であるが、逆は真ではない。 重調和方程式は連続体力学の分野(線型弾性理論における応力関数や流体力学におけるストークス流れの解など)において現れる。 2次元空間[編集] 2次元の場合の一般解は ここで は調和関数で は の調和共役である。 2変数の調和関数は複素解析関数と深く関わりを持つが、2変数の重調和関数についても同じことが言える。2変数の重

  • 1