import tensorflow as tf import numpy as np import melt_dataset import sys from sklearn.metrics import roc_auc_score def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w): return 1.0/(1.0 + tf.exp(-(tf.matmul(X, w)))) ./logistic_regression.py corpus/feature.normed.rand.12000.0_2.txt corpus/feature.normed.rand.12000.1_2.txt notice if setting batch_size too