roc_auc_score# sklearn.metrics.roc_auc_score(y_true, y_score, *, average='macro', sample_weight=None, max_fpr=None, multi_class='raise', labels=None)[source]# Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. Note: this implementation can be used with binary, multiclass and multilabel classification, but some restrictions apply (see Parameters). Read
はじめに こちらの記事の内容を1枚絵にまとめたものになります。以下、文章で少しだけ補足します。 正解率系の各種指標について (参考)こちらの記事より引用させて頂きました。 クラス分類モデルの性能評価には様々な評価指標が存在しますが、上記の各種指標の計算で諸々算出されます。 用語を覚える際に混乱してしまいがちですが、以下の関係性さえ理解しておけば丸暗記しなくても思い出せます。 前一文字:正解か不正解かを示す -> T or F 後一文字:モデルからの予測分類を示す -> P or N 偽陽性は、FP(間違って陽性判定した数) / FP + TN(陰性全体の母数) 真陽性は、TP(正しく陽性判定した数) / TP + FN(陽性全体の母数) テキストでROC曲線とAUCをまとめる ①ROC曲線ってなんだ? クラス分類するためのスコア閾値を外部の変数として変化させ、偽陽性率を横軸に、真陽性率を縦
3.4. Metrics and scoring: quantifying the quality of predictions# 3.4.1. Which scoring function should I use?# Before we take a closer look into the details of the many scores and evaluation metrics, we want to give some guidance, inspired by statistical decision theory, on the choice of scoring functions for supervised learning, see [Gneiting2009]: Which scoring function should I use? Which scori
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く